Electrónica

Hacia los transistores espintrónicos de plástico

(NC&T) El estudio también sugiere que será más difícil de lo que se creía hacer diodos emisores de luz (LEDs) muy eficientes usando materiales orgánicos. Los resultados indican que tales LEDs no convertirían más del 25 por ciento de la electricidad en luz en lugar de en calor, contrariamente a las estimaciones anteriores del 63 por ciento.

Los semiconductores orgánicos o "LEDs de plástico" son mucho más baratos y fáciles de fabricar que los LEDs inorgánicos existentes, usados ahora en semáforos, fuentes de iluminación de algunos edificios, y como indicadores de encendido en ordenadores, televisores, teléfonos móviles, reproductores de DVD, módems, consolas de videojuegos y otros dispositivos electrónicos.

El estudio ha sido dirigido por Christoph Boehme y John Lupton, profesores de física en la Universidad de Utah.

La noticia prometedora sobre los transistores de espín y la noticia aleccionadora sobre los LEDs orgánicos (OLEDs), son ambas el resultado de un experimento que fusionó la electrónica de los semiconductores orgánicos con la espintrónica, que es parte de la mecánica cuántica, la rama de la física que describe la conducta de las moléculas, los átomos y las partículas subatómicas.

Transistores espintrónicos de plástico
John Lupton y Christoph Boehme. (Foto: Nick Borys)
Un átomo consta de un núcleo de protones y neutrones, y una coraza de electrones orbitando alrededor del núcleo. Además de la carga eléctrica, algunos núcleos y todos los electrones tienen una propiedad conocida como el "espín", que es como el momento angular intrínseco de una partícula. A menudo se describe el espín de un electrón como un imán en forma de barra que apunta hacia arriba o hacia abajo.

Los ordenadores y otros dispositivos electrónicos funcionan porque los electrones cargados negativamente fluyen a través de los circuitos conformando una corriente eléctrica. La información computerizada es reducida por los transistores a un código binario de unos o ceros representados por la presencia o ausencia de electrones en los semiconductores.

Los investigadores esperan desarrollar ordenadores aún más pequeños y rápidos usando el espín de los electrones así como su carga eléctrica, para almacenar y transmitir la información; el espín hacia arriba o hacia abajo de los electrones también puede representar a los unos y los ceros de la computación.

En el nuevo estudio, los investigadores han demostrado que la información puede transportarse por los espines en un polímero orgánico, y que es posible fabricar un transistor de espín.




Más artículos
Nanocompuesto mejora los condensadores
Transistores transparentes
Almacenar datos en dispositivos electrónicos
Memoria electrónica
circuitos integrados
Electrónica del carbono
Récord de alta frecuencia en un circuito
Microchip con más eficiencia energética
Candados únicos en los microprocesadores
Conexiones de cobre
Frecuencia en un microrresonador
Movimiento en robots
Circuitos de silicio se pueden estirar y doblar
Diodos láser eléctricos de plástico
Pantalla de matriz activa
Electrónica transparente
Litografía para microchips
Transistores espintrónicos de plástico
Circuitos tridimensionales para chips
Componentes electrónicos deformables