Electrónica

Nuevo microchip con una eficiencia energética de hasta 10 veces más que la normal

(NC&T) Joyce Kwong dirigió el proyecto junto a sus colaboradores del MIT Anantha Chandrakasan, Yogesh Ramadass y Naveen Verma. Los colaboradores de la Texas Instruments fueron Markus Koesler, Korbinian Huber y Hans Moormann.

La clave de la mejora en la eficiencia energética era encontrar formas de hacer que los circuitos en el chip funcionaran con un nivel de voltaje mucho más bajo que lo usual. Mientras la mayoría de los chips actuales opera a alrededor de un voltio, el nuevo diseño opera con sólo 0,3 voltios.

Sin embargo, reducir el voltaje de operación no es tan simple como podría parecer, ya que los microchips existentes se han perfeccionado durante muchos años para operar al voltaje estándar más alto. Las memorias y los circuitos lógicos tienen que ser rediseñados para poder operar con suministros de energía que sean de bajos voltajes.

Uno de los problemas más grandes que el equipo tenía que superar era la variabilidad que se da en la fabricación típica de los chips. Al utilizar niveles de voltaje más bajos, las variaciones e imperfecciones en los chips de silicio se hacen más problemáticas. Diseñar los chips para minimizar su vulnerabilidad a tales variaciones era una parte importante de la estrategia.

Microchip con más eficiencia energética
El equipo de investigación. (Foto: MIT)
Hasta ahora, el nuevo chip es sólo una prueba del concepto. Las aplicaciones comerciales podrían estar disponibles en cinco años, y quizá antes, en muchas áreas. Por ejemplo, los aparatos médicos portátiles o implantables, los teléfonos móviles, y los dispositivos de conexión a redes de ordenadores, podrían estar basados en tales chips y aumentar así considerablemente sus tiempos de funcionamiento sin recarga. También puede haber una amplia variedad de aplicaciones para el ámbito militar, en la producción de redes autónomas de sensores diminutos que podrían dispersarse en un campo de batalla.

En algunas aplicaciones, como en los dispositivos médicos para ser implantados en pacientes, la meta es hacer los requerimientos de energía tan bajos que tales dispositivos puedan energizarse por medio de la "energía ambiental" (empleando el propio calor del cuerpo o su movimiento para proporcionar toda la energía necesaria).




Más artículos
Nanocompuesto mejora los condensadores
Transistores transparentes
Almacenar datos en dispositivos electrónicos
Memoria electrónica
circuitos integrados
Electrónica del carbono
Récord de alta frecuencia en un circuito
Microchip con más eficiencia energética
Candados únicos en los microprocesadores
Conexiones de cobre
Frecuencia en un microrresonador
Movimiento en robots
Circuitos de silicio se pueden estirar y doblar
Diodos láser eléctricos de plástico
Pantalla de matriz activa
Electrónica transparente
Litografía para microchips
Transistores espintrónicos de plástico
Circuitos tridimensionales para chips
Componentes electrónicos deformables