Cómo reparan las células el ADN tras las lesiones producidas por la radiación ultravioleta de la luz solar

Un equipo internacional liderado por investigadores del Centro de Investigaciones Biológicas, del Consejo Superior de Investigaciones Científicas (CSIC), ha identificado el mecanismo por el que las células reparan el ADN tras las lesiones producidas por la radiación ultravioleta, presente en la luz solar. Estas lesiones en el ADN bloquean una enzima, y este bloqueo dispara la reparación de la lesión, que realizan otras proteínas. Los resultados del estudio, que se publican en la revista PNAS, abren el camino para comprender la resistencia de las células a la luz ultravioleta, lo que permite protegernos frente a dosis moderadas de radiación solar. Por tanto, estos resultados pueden tener aplicaciones en el campo de la biomedicina.

“Las lesiones en el ADN amenazan la vida de la célula y deben ser reparadas para mantener la integridad del genoma”, explica la investigadora Marta Sanz Murillo, del Centro de Investigaciones Biológicas, quien ha participado en el estudio. “Entre los daños de ADN más comunes están los dímeros de timina causados por la exposición a la luz ultravioleta, presente en la luz solar”.

El proceso de reparación de estas lesiones se desarrolla mediante una enzima clave, según explica la investigadora: “Durante la síntesis del ARN celular, las ARN polimerasas identifican estas lesiones y activan su reparación. La ARN polimerasa I es la más activa en las células en crecimiento, por lo que su capacidad para identificar lesiones influye en la supervivencia al daño por radiación ultravioleta”.

El investigador y director del trabajo, Carlos Fernández Tornero, también del Centro de Investigaciones Biológicas, añade: “En nuestro artículo, hemos desvelado el mecanismo por el cual esta enzima se queda atascada o bloqueada al aproximarse la lesión a su centro activo, y este hecho inicia la acción de reparación del ADN”.

“Además, a través de un estudio mutacional, hemos identificado un aminoácido, dentro de los más de 5.500 que componen esta compleja enzima, que contribuye de forma esencial a la detección de los dímeros de timina. Nuestros resultados han sido posibles gracias a la combinación de la criomicroscopía electrónica de última generación con estudios de actividad enzimática in vitro”, concluye el investigador.

Marta Sanz-Murilloa,Jun Xub, Georgiy A. Belogurovd, Olga Calvoe, David Gil-Cartonf, María Moreno-Morcilloa, Dong Wangb, and Carlos Fernández-Tornero. Structural basis of RNA polymerase I stalling at UV light-induced DNA damage. PNAS. DOI: 10.1073/pnas.1802626115

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *