Gigante roja
Astronomía

Los secretos de una gigante roja

(NC&T/ESO) La gigante roja S Orionis (S Ori) es una estrella variable del tipo Mira. Su masa es similar a la del Sol, con la diferencia de que está mucho más cerca de convertirse en una enana blanca, el mismo final que le espera a nuestro Sol dentro de 5 mil millones de años.

Las estrellas Mira son muy grandes y pierden enormes cantidades de materia. Cada año, S Ori eyecta hacia el cosmos el equivalente a la masa de la Tierra.

Por primera vez, un grupo de astrónomos realizó una serie de observaciones coordinadas de tres capas separadas dentro del tenue envoltorio externo de esta estrella: la capa molecular, la capa de polvo y la capa maser. Esto significó un avance significativo en la comprensión del mecanismo por el cual las gigantes rojas, antes de morir, pierden masa y la devuelven al medio interestelar.

"Ya que todos somos polvo de estrellas, es muy importante estudiar la fase en que una estrella evolucionada envía materia procesada de vuelta al medio interestelar para ser utilizada por la próxima generación de estrellas, planetas... y humanos", señala Markus Wittkowski, autor principal del artículo que informa sobre estos resultados. Una estrella como el Sol perderá entre un tercio y la mitad de su masa durante la etapa Mira.

Gigante roja
Representación artística de la estructura de la gigante roja pulsante.Tres principales componentes: una capa molecular ,una capa de polvo y la capa maser . (Foto: ESO ())
S Ori es además una estrella que pulsa con un período de 420 días. A lo largo de este ciclo, su brillo cambia por un factor del orden de 500, mientras su diámetro varía en un 20%.

Aunque se trata de una estrella enorme -aproximadamente del tamaño de la órbita de la Tierra alrededor de Sol-, se encuentra muy lejos, por lo que se necesita una resolución muy alta para observar sus profundos envoltorios. Esto se puede lograr sólo con técnicas interferométricas.

"Los astrónomos son como los médicos, usan varios instrumentos para examinar distintas partes del cuerpo humano", dijo el co-autor David Boboltz. "Mientras la boca se puede revisar con una simple luz, se necesita un estetoscopio para escuchar los latidos del corazón. Del mismo modo, el corazón de la estrella se puede observar en el rango óptico, las capas moleculares y de polvo se pueden estudiar en el infrarrojo, y la emisión maser se puede sondear con instrumentos de radio. Únicamente la combinación de los tres nos ofrece una imagen más completa de la estrella y su envoltorio", concluye Boboltz.

La emisión maser proviene de las moléculas del monóxido de silicio (SiO) y se puede usar para obtener imágenes y rastrear el movimiento de nubes de gas, de hasta 10 veces el tamaño del Sol, en el envoltorio estelar.

Los astrónomos observaron S Ori con dos de las instalaciones interferométricas más grandes disponibles: el Interferómetro del Very Large Telescope (VLTI) en Paranal, que observa en el infrarrojo mediano y cercano; y el Very Long Baseline Array (VLBA) operado por NRAO, que toma mediciones en el rango de las ondas de radio.

Debido a los cambios periódicos de la luminosidad de la estrella, los astrónomos estudiaron simultáneamente con ambos instrumentos las distintas épocas de máxima y mínima luminosidad.

Los astrónomos encontraron que el diámetro de la estrella variaba entre 7,9 miliarcosegundos y 9,7 miliarcosegundos de una época a otra. Esto corresponde a una variación en su radio de 1,9 a 2,3 veces la distancia entre la Tierra y el Sol, o unos 500 radios solares.

Incluso se descubrió que la capa interna de polvo tiene el doble de ese tamaño. Las manchas maser, que también se forman en el doble del radio de la estrella, muestran la estructura típica de anillos distribuidos por grupos. Sus velocidades indican que el gas se expande radialmente, alejándose a una velocidad de unos 10 Km/s.

El análisis de múltiples longitudes de onda indica que cerca de la fase de luminosidad mínima hay una mayor producción de polvo y eyección de masa. Después de esta intensa producción y eyección de materia, la estrella continúa pulsando y cuando llega a la luminosidad máxima despliega una capa de polvo mucho más expandida. Esto apoya la teoría de una fuerte conexión entre la pulsación Mira con la producción y expulsión de polvo.

Además, los astrónomos encontraron que los granos de óxido de aluminio constituyen la mayor parte de la capa de polvo de S Ori: se calcula que el tamaño del grano es mil veces más pequeño que el diámetro de un cabello humano.

"Conocemos un capítulo de la vida secreta de una estrella Mira, pero se podrá aprender mucho más en el futuro próximo, cuando agreguemos a nuestro enfoque observacional (que ya es amplio) la interferometría del infrarrojo cercano con el instrumento AMBER en el VLTI", dijo Wittkowski.

ESO opera el Interferómetro del VLT en el Observatorio de Cerro Paranal (II Región de Chile), con cuatro telescopios fijos de 8,2 metros y cuatro telescopios móviles de 1,8 metros, que funcionan a longitudes de onda ópticas/infrarrojas. NRAO opera el Very Long Baseline Array con 10 estaciones a través de Estados Unidos, que trabajan con longitudes de onda de radio entre 3 mm y 90 cm (0,3-90 GHz). ESO, NRAO y NAOJ (Observatorio Astronómico Nacional de Japón) operarán el Atacama Large Millimeter/submillimeter Array (ALMA) en Chile, que funcionará a longitudes de onda milimétricas entre 0,3 y 10 mm (30 – 950 GHz).
  Haz click aquí para ver vídeos relacionados con este tema


Más artículos
Sagitario vía lactea
Gigante roja
Telescopio Canarias
ISS/STS-118
Noticias Astronáutica
Contaminación estrellas
Programa de identificación de astros
agujeros negros supermasivos
Informe ISS/STS-118
Investigación Luna y Marte
Vida vegetal en planetas
Informe iss/sts-118
Noticias breves de astronáutica
Teoría misterio lunar
Nueva teoría agujeros negros
Informe ISS/STS
Phoenix, Marte
Vuelos a la Luna
Detalle simulación cosmológica
Galaxias más distantes