robots Archive

Robots para encontrar la aguja en el pajar

El departamento de Ingeniería Electrónica, de Sistemas Informáticos y Automática de la Universidad de Huelva ha desarrollado un método matemático que mejora los resultados de exploración de los autómatas. De esta manera, se podrán crear robots con función de localización de personas y objetos más eficaces y con menor consumo energético.

En el artículo publicado por la revista IEEE/ASME Transactions on Mechatronics con el título ‘Toward Simple Strategy for Optimal Tracking and Localization of Robots with Adaptive Particle Filtering’, los científicos han desarrollado un método algorítmico basado en una serie de ecuaciones básicas que determina la forma en la que los robots deben buscar objetivos concretos minimizando el tiempo, la capacidad de cómputo y, por tanto, la energía que tardan en encontrarlo.

“El problema en los sistemas de localización actuales es que utilizan muchos recursos innecesarios para conseguir la meta que se les plantea. Requiere buscar los parámetros óptimos que automaticen el proceso”, explica a la Fundación Descubre el investigador de la Universidad de Huelva Tomás Mateo Sanguino, autor del artículo.

Ejemplo de aplicación en visión artificial del algoritmo de búsqueda de partículas localizadas en el color azul

El experto, perteneciente al grupo de investigación de Control y Robótica, añade que la capacidad de los sistemas robóticos para navegar de forma autónoma en entornos desconocidos depende en gran medida de estrategias como la superación de los problemas de creación de mapas, la localización simultánea, la generación autónoma de trayectorias o evitar obstáculos. Esto no siempre se logra de manera óptima. Los resultados son poco eficientes, el coste computacional alto y la configuración de las variables, en la mayoría de los casos, demasiado complejas.

Menos energía, más eficiencia

Un robot debe, en primer lugar, conocer su ubicación en un lugar concreto y analizar los elementos espaciales que le rodean. Después, debe establecer su objetivo y evaluar las distintas posibilidades que le permitan conseguirlo en el menor tiempo posible. Además, debe recalcular todo de nuevo si en algún momento cambian las condiciones del entorno.

Ejemplo de funcionamiento del sistema

Por tanto, los expertos persiguen la generalización de los problemas para aplicarlos en distintos escenarios donde las variables cambian en el tiempo. La combinación de estrategias de adaptación, predicción y optimización incrementa la eficiencia en la búsqueda de soluciones. Hasta el momento, estos ajustes se realizan con mucha dificultad y con un nivel de acierto bajo. Sin embargo, los expertos han confirmado que el algoritmo creado permite una generalización muy amplia y aprovecha ciertas técnicas de optimización para ser más eficaz.

A partir de aquí, los investigadores proponen aplicar esta metodología fundamentada en el filtro de partículas adaptativo basado en dispersión (DAPF), que consiste en proporcionar un mayor número de partículas durante el estado de búsqueda inicial del problema (cuando la localización presenta mayor incertidumbre) y menos partículas durante el estado de seguimiento siguiente (cuando hay menos incertidumbre). Podría compararse con la búsqueda de objetivos usando un conjunto de canicas inteligentes. Al principio, se dedicaría un mayor número de bolas para encontrar la característica objetivo cuando no se conoce el espacio donde se está buscando (por ejemplo, píxeles azules en una imagen). Las canicas irían copando todo el espacio de búsqueda y conforme encuentran el objetivo se agruparían en torno a él. Gracias al algoritmo de optimización se reduce el número de bolas en esta fase y los esfuerzos sólo se centrarían en el seguimiento del objetivo.

Tras los experimentos, han demostrado que usando un número variable de partículas, cuya población obedece al algoritmo desarrollado, los robots son capaces de enfocar sus recursos en el ítem concreto que se les requiere. El tiempo y el uso de recursos computacionales también afecta a la energía utilizada en la búsqueda, que será mucho menor que en otros algoritmos similares. De esta manera, resuelven también otro de los problemas asociados a esta función de los robots, que ven cómo se agota antes de tiempo la capacidad de carga de las baterías implantadas durante el desarrollo de su misión.

Referencias:
Tomás de J. Mateo Sanguino, Francisco Ponce Gómez: ‘Toward Simple Strategy for Optimal Tracking and Localization of Robots with Adaptive Particle Filtering’, IEEE/ASME Transactions on Mechatronics.

Robots con razonamientos humanos

Diseñan robots capaces de tomar decisiones autónomas y cooperar o no con un ser humano en una situación determinada

UCM/DICYT Gracias al uso de redes neuronales, científicos de la Universidad Complutense de Madrid han diseñado robots capaces de tomar decisiones autónomas y cooperar o no con un ser humano en una situación determinada. Los agentes humanoides cuentan con mapas cognitivos compactos que les permiten “comprender” entornos con personas en movimiento e interaccionar con ellas.

Robots inteligentes

“Nuestra investigación pretende comprender los mecanismos que el cerebro emplea para entender el mundo e implementarlos en robots, dotándolos de capacidades cognitivas cercanas a las nuestras”, explica Valeri Makarov, investigador del departamento de Matemática Aplicada de la Universidad Complutense de Madrid (UCM).

En un estudio, publicado en Biological Cybernetics, Makarov y sus compañeros de la UCM han desarrollado agentes humanoides con redes neuronales capaces de tomar decisiones de forma autónoma.

Para llegar a este diseño, los científicos se han basado en los mapas cognitivos que nuestro cerebro crea para entender el entorno, y desplazarnos por una habitación vacía, como si tuviéramos un GPS. El problema se presenta cuando ese lugar no es estático sino dinámico, con personas moviéndose.

“Hemos propuesto una teoría según la cual, el cerebro, al percibir una situación dinámica construye una especie de fotografía, extrayendo la información relevante de la dimensión temporal y proyectándola en un mapa especial, compactando el tiempo”, explica Makarov. Esta ruta dinámica la han denominado mapa cognitivo compacto.

En el estudio, los científicos han utilizado las redes neuronales para sintetizar el tiempo y crear los mapas cognitivos compactos. Implementar estas rutas dinámicas en un robot le dotaría de funciones similares a un ser humano, según los autores.

Humanoides capaces de cooperar

El proyecto contempla dos escenarios: uno en el que el robot coopera con el humano y otro, donde lo evita. “El objetivo es que el humanoide se comporte de forma lo más parecida a nosotros y que tenga la capacidad de saber cuándo tiene que cooperar y cuándo no”, resume el investigador.

De esta forma, el robot es capaz de desplazarse por un pasillo, cruzarse con un humano y sortearlo para evitar chocar con él, si aprecia que la persona no cambia su rumbo.

El siguiente paso será que el humanoide sea capaz de “pensar” cómo tiene que interaccionar con el humano, no solo evitarlo para no chocar, sino también darle asistencia, intervenir o perseguirlo, en el caso de que actúe en situaciones de seguridad.

“Esa es la idea central de la cognición biométrica: introducir el conocimiento de la interacción con un humano a la cognición sobre la realidad, para que el robot entienda que la persona puede responder de formas muy complejas a las que tendrá que enfrentarse”, concluye Makarov.

Referencia bibliográfica
José A. Villacorta-Atienza, Carlos Calvo y Valeri A. Makarov. “Prediction-for-CompAction: navigation in social environments using generalized cognitive maps”. Biological Cybernetics, 109(3), 307-320, 2015. DOI: 10.1007/s00422-015-0644-8.

Fuente: DICYT
Website: dicyt.com