ondas gravitacionales Archive

¿Qué es el experimento Ligo que ha demostrado la existencia de las ondas gravitacionales?

UCM/DICYT Aunque disponíamos de evidencias indirectas desde el año 1974, el descubrimiento ahora conocido supone la primera detección directa de este tipo de ondas. En 1974, R.A. Hulse y J.H. Taylor explicaron la variación en el periodo del púlsar binario PSR B1913+16 como efecto precisamente de la emisión de radiación gravitacional, por lo que fueron galardonados con el premio Nobel de Física en 1993.

Las ondas gravitacionales detectadas han sido producidas en la colisión de dos agujeros negros situados a más de mil millones de años luz de la Tierra. Dicha colisión habría generado una perturbación del espacio-tiempo que, de acuerdo con la teoría de la Relatividad General, se habría propagado hasta nosotros a la velocidad de la luz en forma de onda de deformación del propio espacio. Los dos detectores de aLIGO (Advanced LIGO), situados en Estados Unidos, han detectado la señal con un espectro consistente con las predicciones de la teoría propuesta por Einstein.

Experimento LIGO

Los detectores están formados por dos interferómetros láser, separados por una distancia de 3.000 km y cuyos brazos son tubos de vacío de varios kilómetros de longitud. El uso de dos detectores separados es fundamental para poder suprimir el ruido que constituye el principal problema en este tipo de técnica. Cuando una onda gravitatoria atraviesa uno de estos detectores genera un cambio minúsculo de una parte en 10^21 en la longitud del brazo que, sin embargo, esta tecnología ha sido capaz de detectar.

Este descubrimiento no solamente supone una confirmación de la teoría de gravitación de Einstein, que predice que las masas deforman tanto el espacio –cambian las longitudes de los objetos próximos a ellas– como el tiempo –hacen que los relojes avancen más despacio–, sino que abre una nueva ventana a la observación del universo.

A diferencia de las ondas electromagnéticas ordinarias, las ondas gravitacionales no son absorbidas ni reflejadas por la materia, por lo que pueden viajar directamente desde la fuente hasta nosotros y, de esta forma, podrán proporcionar información valiosísima de procesos astrofísicos y cosmológicos lejanos.

El primero de nuevos hallazgos

En el experimento LIGO, operado por Caltech y el MIT, trabajan más de 1.000 científicos de 15 países, entre los que se encuentran diez investigadores de universidades españolas. A diferencia de la detección fallida de estas ondas anunciada por el experimento BICEP2 en 2014, este descubrimiento no ha resultado una sorpresa para la comunidad científica, que esperaba que con la mejora en la sensibilidad de aLIGO se pudieran detectar hasta tres eventos como este en los tres primeros meses de funcionamiento.

De hecho, tanto aLIGO como el detector Advanced VIRGO (en Italia) deberían ser capaces de confirmar este descubrimiento a partir de los datos que se obtengan durante 2016 y 2017, en los que se esperan hasta 20 señales de este tipo, cantidad que se incrementará a partir de 2019 hasta las 200 detecciones por año.

En el futuro, otros detectores en el espacio como eLISA (Evolved Laser Interferometer Space Antenna), misión propuesta por la Agencia Espacial Europea, serán capaces de explorar nuevos rangos de frecuencias en el espectro de ondas gravitacionales que complementarán las detecciones en tierra, abriendo así la era de la astronomía de ondas gravitacionales.

Antonio López Maroto, María del Prado Martín Moruno y José Alberto Ruiz Cembranos son investigadores del Departamento de Física Teórica I de la Universidad Complutense de Madrid.


Fuente: DICYT
Website: dicyt.com


Hacia la comprensión de la energía oscura y la radiación del fondo cósmico

La investigadora Irene Sendra del Departamento de Física Teórica e Historia de la Ciencia en  la Universidad del País Vasco (UPV/EHU) se ha asomado al universo más antiguo para estudiar la radiación de fondo de microondas, el ‘eco’ que quedó tras el Big Bang.

“Es la prueba más lejana que tenemos del universo, y su estudio nos dice que el número efectivo de neutrinos –partículas subatómicas sin carga y casi sin masa– es superior a tres”, explica la investigadora. “Sin embargo, realmente sabemos, por el modelo estándar, que solo hay tres tipos de neutrinos. Por lo tanto, tenemos un valor un tanto malsonante, y tratamos de explicar ese exceso”.

Hacia-la-comprension-de-la-energia-oscura-y-la-radiacion-del-fondo-cosmico_image365_La propuesta de Sendra, cuyos detalles se han publicado en la revista Physical Review, va en la dirección de la teoría de cuerdas, que considera a las partículas como ‘estados vibracionales’ de un objeto más básico denominado ‘cuerda’.

Según sus resultados, el exceso de neutrinos se puede interpretar como la contribución de ondas gravitacionales primordiales, producidas por la interacción de cuerdas cósmicas en la época en la que se produjo el fondo cósmico de microondas.

Desvelar misterios ‘oscuros’

El complejo estudio es el último publicado de una serie de investigaciones de la científica, interesada también por desvelar los misterios de la energía y la materia oscura. Ya en su tesis proponía la hipótesis de que la energía oscura podría ser dinámica.

Hasta ahora el modelo más aceptado, conocido como Lambda-CDM, explica la aceleración del universo por medio de una constante cosmológica, cuya ecuación de estado se considera tendría un valor de -1. Este valor se mantendría constante a lo largo de toda la evolución del universo. Sin embargo, algunas observaciones no se ajustan a este modelo.

“Nosotros buscamos una energía oscura dinámica que varía con el tiempo, aplicamos varios modelos a los datos observacionales, jugamos con pequeñas perturbaciones, y hemos visto que sí se ajustan mejor que una constante”, explica Sendra, que ha utilizado herramientas matemáticas para el trabajo.

El Premio Nobel Adam Riess participa en las investigaciones sobre energía oscura dinámica

“A través de muchas iteraciones, vemos qué valores tomarían las constantes de nuestro modelo. La ecuación de estado de la energía oscura ahora vale prácticamente -1, pero parece haber evolucionado desde valores distintos en el pasado –señala–, sin embargo, persiste aún un porcentaje de error grande en la determinación de esos valores”.

Según los cálculos de Sendra, estos datos son consistentes con una energía oscura dinámica, que variaría con el desplazamiento hacia la banda roja del espectro del universo. Resultados aún no publicados, obtenidos en colaboración con el Premio Nobel de Física de 2011 Adam Riess, ahondan en esta dirección.

Por otra parte, la investigadora también ha propuesto un nuevo modelo que unifica la energía oscura con la materia oscura: “Podrían ser una misma cosa que se manifiesta de diferente manera según el contexto. Nosotros hemos explicado mediante una única componente el efecto de las dos, y las observaciones dan mejores resultados que otras propuestas donde también se intenta unificar materia y energía oscura”.

Referencias bibliográficas:

Sendra and T.Smith, “Improved limits on short-wavelength gravitational waves from the cosmic microwave background”. Phys.Rev.D85: 123002, 2012.

Sendra and R. Lazkoz, “SN and BAO constraints on (new) polynomial dark energy parametrizations: current results and forecasts”. Mont. Not. Roy. Astron. Soc. 422: 776-793, 2012.