biosensores Archive

Un nuevo biosensor detecta el VIH una semana después de la infección

Un equipo del Consejo Superior de Investigaciones Científicas (CSIC) ha desarrollado un biosensor que puede llegar a detectar el VIH tipo 1 durante la primera semana después de la infección. Los experimentos, realizados con suero humano, detectan el antígeno p24, una proteína presente en el virus del VIH-1. La tecnología, patentada por el CSIC, detecta esta proteína hasta en concentraciones 100.000 veces inferiores que los sistemas actuales. Además, el tiempo total del ensayo es de cuatro horas y 45 minutos, por lo que los resultados clínicos se podrían obtener en el mismo día. La investigación aparece publicada en la revista PLOS ONE.

El biosensor combina estructuras micromecánicas de silicio con nanopartículas de oro, ambas funcionalizadas con anticuerpos específicos al p24. Al final del inmunoensayo, el p24 es atrapado a modo sándwich entre las nanopartículas de oro y las estructuras micromecánicas de silicio. Las nanopartículas de oro presentan resonancias ópticas conocidas como plasmones capaces de dispersar la luz con mucha eficiencia y se han convertido en una de las estructuras que más interés han despertado en la última década en el campo de la óptica. Las estructuras micromecánicas son excelentes sensores mecánicos capaces de detectar interacciones tan pequeñas como las fuerzas intermoleculares. La combinación de estas dos estructuras produce señales mecánicas y ópticas para detectar el p24, que se amplifican la una a la otra produciendo una extraordinaria sensibilidad.

La tecnología, patentada por el CSIC, está siendo además aplicada para la detección precoz de algunos tipos de cáncer. “El chip en sí mismo, la parte física, es el mismo para las pruebas de VIH que para la de los biomarcadores de cáncer. Lo que cambia es la parte química, la solución que colocamos para que reaccione según lo que estamos buscando. Por eso, nuestro trabajo fundamental se centra en desarrollar aplicaciones para esta nueva tecnología”, señala el investigador del CSIC Javier Tamayo, que trabaja en el Instituto de Microelectrónica de Madrid.

“El biosensor usa estructuras que se fabrican con tecnologías bien establecidas en microelectrónica, lo cual permite su producción a gran escala y a bajo coste. Esto unido a su simplicidad lo podrían convertir en un buen candidato para ser usado en países en vías de desarrollo”, detalla Tamayo.

¿Cómo funciona el biosensor?

El experimento se inicia incubando sobre el sensor un mililitro de suero humano durante una hora a 37 °C para permitir la unión de los antígenos p24 de HIV-1, si los hubiera, a los anticuerpos de captura ubicados en la superficie del sensor. Tras esto se vuelve a incubar, pero en este caso con nanopartículas de oro, a 37 °C durante 15 minutos para el marcaje de las proteínas p24 capturadas.

Finalmente, el material resultante se somete a un enjuague para eliminar las partículas que no se han unido. “El tiempo total del ensayo es de cuatro horas y 45 minutos. Es realmente rápido, por lo que, para confirmar el diagnóstico se podría incluso repetir las pruebas y los resultados clínicos podrían estar el mismo día del control médico. Los resultados son estadísticamente significativos y podrían adaptarse a los requerimientos médicos”, detalla el investigador del CSIC.

Los sistemas de detección de VIH

La infección aguda por virus de la inmunodeficiencia humana se define como el tiempo desde la adquisición del virus hasta la seroconversión, es decir, la aparición de anticuerpos detectables para el VIH en la sangre.

En la actualidad existen dos formas para detectar el VIH en sangre. La infección puede ser diagnosticada mediante la detección en sangre de ARN viral por las pruebas de amplificación de ácidos nucleicos, o al detectar p24 con los inmunoensayos de cuarta generación.

El primer método, basado en la detección en sangre de ARN viral, presenta un límite de detección de 20 a 35 copias de ARN por mililitro, es decir, una concentración que típicamente ocurre dos semanas después de la adquisición del VIH. En el segundo método, durante los inmunoensayos de cuarta generación, se alcanza un límite de detección de p24 de 10 picogramos por mililitro, una concentración alcanzada aproximadamente tres o cuatro semanas después de la infección.

“Esta nueva tecnología es capaz de detectar p24 en concentraciones hasta 100.000 veces inferiores que la última generación de inmunoensayos aprobados y 100 veces inferiores que los métodos de detección en sangre de ARN viral. Esto reduce la fase indetectable después de la infección a solo una semana”, señala la investigadora del CSIC Priscila Kosaka, del Instituto de Microelectrónica de Madrid.

Detección del VIH en sangre

La duración de la etapa entre el contagio y la seroconversión es de aproximadamente cuatro semanas. La detección temprana del VIH es crucial para la mejora de la salud del individuo. Los cambios progresivos se producen después de la adquisición del VIH, como el agotamiento irreversible de los linfocitos CD4 en el intestino, la replicación en el sistema nervioso central y el establecimiento de reservorios latentes de VIH.

“El potencial de infectividad del VIH en la primera etapa del contagio es mucho mayor que en etapas posteriores. Por tanto, el inicio de la terapia antirretroviral antes de la seroconversión mejora el control inmunológico y se ha asociado con beneficios en el recuento de células CD4, reducción de la inflamación sistémica, preservación de la función cognitiva y reducción del reservorio latente. Por motivos lógicos, su detección es crítica para la prevención de la transmisión del VIH”, detalla Kosaka.

Esta tecnología, está patentada por el CSIC y licenciada a la empresa Mecwins, una spin-off del CSIC creada en 2008 por Javier Tamayo y Montserrat Calleja. Esta spin-off posee además tres patentes fruto del trabajo de este equipo del CSIC. La investigación actual cuenta con financiación de la Asociación Española contra el Cáncer.

Nueva vía para crear futuros biosensores de medición de la glucosa

Hasta ahora la comunidad científica establecía dos mecanismos independientes de unión entre proteínas. Por una parte, un mecanismo denominado ‘encaje inducido’ donde la proteína adopta la forma del ligando durante el proceso de asociación. Por otra, la ‘selección de conformaciones’, es decir, de la misma forma que cada cerradura requiere de una llave con características definidas, la unión entre una proteína y su ligando se dará en función de que sus formas posibiliten este encaje.

Ahora, un equipo liderado por el investigador Óscar Millet de la Unidad de Biología Estructural de CIC bioGUNE ha desmontado este paradigma y plantea que ligeras modificaciones introducidas con ingeniería genética en las regiones bisagra que unen dos proteínas, son suficientes para alterar el propio mecanismo de unión. El estudio se ha publicado recientemente en el Journal of the American Chemical Society.

Nueva-via-para-crear-futuros-biosensores-de-medicion-de-la-glucosa_image365_Los científicos han tomado como modelo dos proteínas de unión periplásmicas –están entre dos membranas– bacterianas. Estas proteínas se unen mediante un ‘espectacular’ cambio conformacional, donde se cierran dos ‘dominios’ en torno a una región bisagra. El proceso se asemeja al que desarrollan las plantas carnívoras para atrapar a los insectos entre sus dos lóbulos carnosos.

“El principal resultado de nuestro trabajo reside en demostrar que los mecanismos están íntimamente conectados y que se puede pasar del uno al otro tan solo introduciendo pequeñas modificaciones en la proteína”, afirma Óscar Millet.

Solo diferencias sutiles

“No solamente hemos entendido este mecanismo, sino que hemos visto que la diferencia entre encaje inducido y selección de conformaciones es muy sutil. Realmente, no son dos procesos independientes, sino que está todo conectado. La naturaleza siempre es sutil, y pequeñas variaciones en la composición química de la bisagra llevan de un mecanismo al otro”, añade el investigador.

“Este mecanismo está totalmente gobernado por la región bisagra hasta tal punto que intercambiando las bisagras mediante ingeniería genética también se produce el cambio de mecanismo: la  llamada GGBP con la bisagra de la RBP actúa mediante encaje inducido y viceversa, la RBP con la bisagra de la GGBP une al sustrato mediante un mecanismo de llave y cerradura”, afirma Millet.

Los mecanismos de comunicación a nivel subcelular están basados en la interacción entre proteínas o entre la proteína con metabolitos y otros ligandos. Estos fenómenos permiten explicar la inmensa mayoría de las funciones de las proteínas en los organismos vivos pero para ello es imprescindible que cada proteína sepa exactamente a qué ligando se debe unir.

Las moléculas se podrían usar como biosensores para medir la glucosa en personas diabéticas

El científico también plantea las posibles aplicaciones del hallazgo: “La comprensión del mecanismo mediante el cual las proteínas periplásmicas atrapan la glucosa para introducirla en la célula abre la posibilidad de utilizar estas moléculas como biosensores”. Estos biosensores podrían ofrecer la posibilidad de medir la concentración de glucosa en fluidos distintos a la sangre, como por ejemplo la orina, lo que facilitaría el proceso y proporcionaría datos más fiables que los métodos tradicionales de medición de la concentración de glucosa en la sangre de los enfermos de diabetes.

Las técnicas que se emplean actualmente solo pueden dar una medida aproximada de la concentración de la glucosa en la sangre, debido a que hay muchas otras sustancias que la enmascaran. Por lo tanto, cualquier avance en la búsqueda de nuevos métodos de diagnóstico repercutirá en una mejora en el control de la enfermedad.

Medir la concentración de la glucosa es de gran importancia para los enfermos de diabetes, un transtorno crónico grave que afecta a más de 300 millones de personas en todo el mundo, 5 millones en España. Esta enfermedad metabólica está causada por la baja producción de la hormona insulina en el páncreas o por su inadecuado uso por parte del cuerpo. La insulina está implicada en el transporte de la glucosa al interior de las células, que la convierten en energia útil.

En los diabéticos, la escasa generación de insulina o el uso deficiente que su organismo hace de ella provoca un aumento excesivo de la concentración de la glucosa en la sangre, lo cual provoca numerosos síntomas como la fatiga, la pérdida de peso, neuropatías, problemas de visión e incluso, en los casos más extremos, la muerte.