asteroides Archive

¿Cómo podría desviarse un asteroide para que no llegue a impactar contra la Tierra?

Un estudio internacional dirigido por el Consejo Superior de Investigaciones Científicas (CSIC) aporta información sobre los efectos que tendría el impacto de un proyectil sobre un asteroide. El objetivo del proyecto es averiguar cómo podría desviarse un asteroide para que no llegue a impactar contra la Tierra. La investigación, publicada en la revista The Astrophysical Journal, se centra en el estudio del asteroide Cheliábinsk, que explotó en 2013 sobre cielo ruso tras atravesar la atmósfera.

La probabilidad de que un asteroide de tamaño kilométrico provoque consecuencias devastadoras tras impactar con la Tierra es estadísticamente pequeña. Lo que sí es más frecuente es que alcancen la atmósfera terrestre objetos de pocas decenas de metros que se descubren continuamente.

Según los resultados de este estudio, la composición, la estructura interna, la densidad y otras propiedades físicas del asteroide son fundamentales para determinar el éxito de una misión en la que se lanzaría un proyectil cinético para desviar la órbita de un asteroide peligroso.

El 15 de febrero de 2013, un asteroide de aproximadamente 18 metros de diámetro explotó sobre la localidad rusa de Cheliábinsk creando miles de meteoritos que cayeron a Tierra. La fragmentación de este objeto en la atmósfera ejemplificó que la Tierra actúa como un eficiente escudo, aunque más de mil meteoritos con una masa total superior a una tonelada alcanzaron el suelo. A pesar de ser un asteroide pequeño, la onda de choque que produjo al penetrar en la atmósfera a velocidad hipersónica causó centenares de heridos y grandes daños materiales.

“El estudio de la composición química y mineralógica del meteorito Cheliábinsk nos permite conocer detalles fundamentales de los procesos de compactación por colisiones que han sufrido los asteroides cercanos a la Tierra. Los resultados de este trabajo son muy relevantes para una posible misión en que se desee desviar de manera eficiente un asteroide próximo a la Tierra”, señala el investigador del CSIC Josep Maria Trigo, del Instituto de Ciencias del Espacio.

Por este motivo, el nuevo estudio ha obtenido de manera rigurosa y sistemática las propiedades de los materiales que forman el asteroide; en particular, la dureza, la elasticidad y la resistencia a la fractura podrían ser determinantes para que el impacto de un proyectil cinético lograse desviar la órbita de este objeto.

Los experimentos

El meteorito Cheliábinsk es de una clase conocida como condrita ordinaria. Los investigadores del CSIC lo escogieron pues puede considerarse representativo de los materiales formativos de la mayoría de asteroides potencialmente peligrosos para la Tierra. Estos asteroides han sufrido gran cantidad de colisiones antes de alcanzar la Tierra y, por ello, los minerales que los componen aparecen chocados e incrementan su consistencia.

Estos experimentos han sido realizados mediante un instrumento conocido como nanoindentador. Consta de un pequeño pistón acabado en una cabeza de diamante que realiza una presión predefinida y genera pequeñas muescas en el material, al tiempo que mide tanto la profundidad alcanzada como la recuperación plástica del material. Por ello, resulta posible determinar parámetros claves como la resistencia a la fractura, la dureza, la recuperación elástica o el módulo de Young. Tal y como explica el investigador Carles Moyano: “Como las condritas ordinarias son rocas bastante complejas y heterogéneas, formadas por minerales con propiedades diferentes y que muestran grados de choque variables en esta clase de meteoritos, es preciso un estudio exhaustivo que en nuestro caso ha requerido cerca de dos años”.

Las medidas de las propiedades mecánicas de Cheliábinsk se realizaron en el laboratorio de nanoindentación que dirige el investigador ICREA Jordi Sort, de la Universidad Autónoma de Barcelona. En el estudio también han participado varios expertos europeos involucrados de la misión Asteroid Impact Mission propuesta a la Agencia Europea del Espacio. “Posiblemente gracias a la realización de estos experimentos, pioneros en meteoritos, estemos más cerca de afrontar con éxito el encuentro futuro con asteroides”, concluye el investigador del CSIC.

Referencia bibliográfica
Carles E. Moyano-Cambero, Eva Pellicer, Josep M. Trigo-Rodríguez1, Iwan P. Williams, Jürgen Blum, Patrick Michel, Michael Küppers, Marina Martínez-Jiménez, Ivan Lloro, Jordi Sort. Nanoindenting the Chelyabinsk meteorite to learn about impact effects in asteroids. The Astrophysical Journal. DOI:10.3847/1538-4357/835/2/157.

Viaje al pasado en busca de un asteroide

Gracias a un trabajo de investigación detectivesco, culminado por el estudio de unas imágenes con más una década de antigüedad, el equipo de investigación de asteroides de la ESA ha llegado a la conclusión de que una roca espacial recién descubierta no presenta riesgo de colisionar próximamente con la Tierra.

Cuando se observa por primera vez un asteroide, siempre se plantea la gran cuestión: ¿hay riesgo de que impacte con la Tierra?

Pero, tras su descubrimiento, los analistas normalmente no tienen por dónde seguir. La imagen inicial, tomada desde un observatorio, por un equipo de investigación o por algún astrónomo aficionado desde su casa, suele limitarse a lo básico: ubicación en el firmamento y brillo. Y, en ocasiones, ni siquiera estos datos son demasiado precisos.

Lo fundamental para establecer con cierta fiabilidad si se trata de un objeto cercano a la Tierra (NEO) —y si podría llegar a alcanzarla o no— es su trayectoria. Y para determinarla se necesita una serie de imágenes adquiridas a lo largo de varios días o incluso meses.

“Para poder calcular la trayectoria y el nivel de riesgo necesitamos una secuencia de varias imágenes; y, con todo, el grado de incertidumbre puede ser enorme. En realidad harían falta meses de observaciones para obtener un cálculo de riesgo de impacto correcto y fiable. Entre tanto, habría motivo para estar preocupados”, señala Ettore Perozzi, del Centro de Coordinación de Objetos Cercanos a la Tierra, ubicado en la sede italiana de la ESA.

Y eso es precisamente lo que sucedió el pasado 19 de octubre, cuando el equipo Catalina Sky Survey descubrió el asteroide 2016 WJ1.

Asteroide 2016 WJ1

Observadores de todo el mundo también capturaron imágenes del asteroide durante las siguientes semanas, incluido un equipo de la ESA desde el observatorio español de Tenerife, pero la incertidumbre sobre su trayectoria no permitía descartar un posible acercamiento en junio de 2065, con una preocupante probabilidad de impacto de 1 entre 8.000.

“Gracias a las imágenes adicionales, pudimos restringir la trayectoria lo suficiente como para empezar a bucear en los archivos astronómicos para ver si alguien había fotografiado anteriormente el asteroide sin haberlo reconocido”, recuerda Marco Micheli, observador del mismo centro.

De encontrar alguna imagen, el equipo podría reconocer su “predescubrimiento”.

La investigación pronto dio frutos: las imágenes tomadas a principios de octubre por el telescopio Pan-STARRS y publicadas online mostraban que podría tratarse de ese mismo asteroide.

Sin considerarlas concluyentes, el equipo asumió que sí eran precisas y decidió usarlas para localizar imágenes adicionales de alta precisión en un sistema de búsqueda de imágenes astronómicas canadiense.

¡Bingo! El equipo dio con dos conjuntos de imágenes de los días 4 y 5 de julio de 2003 tomadas por el Observatorio Canadá–Francia–Hawái (CFHT).

Como relata Detlef Koschny, responsable de objetos cercanos a la Tierra del programa de la ESA para el Conocimiento del Medio Espacial (SSA): “Tras una cuidadosa inspección conseguimos aislar el objeto, y el equipo pudo llevar a cabo cálculos de gran exactitud”.

“Así, logramos excluir todo riesgo de impacto en la Tierra por parte del asteroide 2016 WJ1, tanto en el futuro próximo como en el más lejano”.

La ESA ahora está desarrollando un nuevo conjunto de telescopios de tipo ‘ojo de mosca’, panorámicos y automatizados, que realizarán barridos nocturnos del firmamento para crear en el futuro un completo archivo de imágenes que permitirán confirmar los predescubrimientos con mayor rapidez.

El observatorio del Roque de los Muchachos detecta 5 nuevos asteroides cercanos a la Tierra

Fruto del programa EURONEAR (European Near Earth Asteroid Research), este descubrimiento ha dado a conocer, entre otras cosas, el cuarto cuasi satélite de la Tierra, es decir un asteroide que recorre su órbita alrededor del Sol sincronizado con nuestro planeta y que lleva el poco apasionado nombre de 2014 OL339.

El programa EURONEAR se puso en marcha en 2006 con el objetivo de estudiar los asteroides próximos a la Tierra (NEAs, acrónimo inglés de Near-Earth Asteroids) y, en particular, los potencialmente peligrosos, aquellos que cruzan la órbita de nuestro planeta y, por tanto, existe cierto riesgo de que colisionen con él. Este programa cuenta con una red de 20 telescopios distribuidos por todo el mundo, entre los que se encuentran el INT y el Telescopio William Herschel (WHT), ambos pertenecientes al Grupo de Telescopios Isaac Newton (ING por sus siglas en inglés) y situados en el Observatorio del Roque de los Muchachos, en la isla de La Palma.

Observatorio del Roque de los Muchachos

En la actualidad, se conocen más de 12.000 NEAs, la mayor parte descubiertos mediante grandes sondeos liderados por instituciones de los EEUU, y se estima que deben existir otros 10.000 con tamaños superiores a los 100 metros que aún no han sido descubiertos. Determinar con precisión las órbitas y tamaños de estos asteroides es de gran importancia para identificar cuáles podrían tener un encuentro con la Tierra, en qué momento podría producirse y cuáles podrían ser las consecuencias del mismo.

Colaboración con estudiantes y astrónomos aficionados

“EURONEAR es el primer proyecto europeo que pretende contribuir a la investigación en NEAs”, explica Ovidiu Vaduvescu, fundador de EURONEAR, astrónomo del ING y asociado al IAC y al Instituto de Mecánica Celeste y de Cálculo de Efemérides (IMCCE). “Al no disponer de telescopios dedicados únicamente a la búsqueda y caracterización de NEAs, el objetivo del proyecto no es convertirse en un sondeo, sino mejorar nuestro conocimiento de las órbitas de NEAs poco conocidos, utilizando un equipo compuesto en su mayoría por estudiantes y astrónomos aficionados.”

Además del trabajo rutinario de seguimiento de asteroides conocidos que ha conseguido mejorar en los últimos años las órbitas de más de 1.500 NEAs y otros tantos asteroides del cinturón principal (conjunto de asteroides que se encuentran orbitando el Sol entre Marte y Júpiter), desde principios de 2014 se han desarrollado con el INT tres programas destinados a mejorar nuestro conocimiento de las órbitas de NEAs que sólo habían sido observados previamente en una oposición (un asteroide se dice que está en oposición cuando se encuentra en el punto del cielo diametralmente opuesto al Sol, de modo que la Tierra se encuentra entre éste y el asteroide), así como el seguimiento rápido de NEAs recién descubiertos. El INT es un telescopio apropiado para observar este tipo de objetos, muy débiles, cuyo brillo suele estar por debajo del límite de detección de otros telescopios que se usan para rastrearlos.

Gracias a estos programas, el equipo, liderado por Ovidiu Vaduvescu y formado por 10 estudiantes y astrónomos aficionados, algunos trabajando vía internet, descubrió en junio de este año el que posteriormente fue denominado 2014 LU14. Este objeto ha pasado a ser el primer NEA descubierto y confirmado por EURONEAR, el primero hallado con el INT y también el primero de este tipo descubierto desde el Observatorio del Roque de los Muchachos.

En los meses posteriores a este primer hallazgo, el grupo de investigadores ha descubierto otros 4 NEAs y esperan poder seguir incrementando este número en el futuro. Para realizar estos descubrimientos ha sido fundamental el trabajo de estudiantes y astrónomos aficionados, quienes han examinado miles de imágenes, comparándolas, para buscar y medir todos los objetos que se desplacen en ellas, usando un software apropiado.

Los NEAs descubiertos hasta la fecha con el INT son:

2014LU14 – Observado la noche del 1 al 2 de junio de 2014, descubierto por el astrónomo aficionado Lucian Hudin (Rumanía).

2014NL52 – Observado la noche del 9 al 10 de julio de 2014, descubierto por el astrónomo aficionado Lucian Hudin (Rumanía). Se trata de un asteroide que rota a gran velocidad, dando una vuelta sobre sí mismo cada 4 minutos, lo que lo sitúa muy cerca del límite de fragmentación para su tamaño.

2014OL339 – Observado la noche del 28 al 29 de julio de 2014, descubierto por el astrónomo soporte Farid Char (Chile). Se trata de un cuasi-satélite de la Tierra, el cuarto conocido y el primer cuasi-satélite Atón (asteroide cuya órbita tiene un semieje mayor menor que el de la Tierra). Este objeto se encuentra en resonancia orbital con la Tierra, lo que generalmente lo mantendría en una órbita estable cercana al planeta durante largos períodos de tiempo. Sin embargo, la órbita de este asteroide es bastante inestable y está influenciada por la gravedad terrestre. Se ha publicado recientemente un artículo respecto a este NEA: http://mnras.oxfordjournals.org/content/445/3/2985.abstract

2014SG143 – Observado la noche del 17 al 18 de septiembre de 2014, descubierto por el astrónomo aficionado Lucian Hudin (Rumanía). Es el mayor objeto de los hallados, de aproximadamente 1 km de longitud.

2014VP – Observado la noche del 3 al 4 de noviembre de 2014, descubierto por los astrónomos aficionados Lucian Hudin y Radu Cornea (Rumanía). Se trata de un objeto bastante brillante. 


Fuente: Instituto de Astrofísica de Canarias (http://www.iac.es)