ALMA Archive

La imagen con mayor resolución de un “agujero” alrededor de un cúmulo galáctico

Un equipo de investigación dirigido por Tetsu Kitayama, profesor de la Universidad Toho (Japón), usó ALMA para estudiar el gas caliente de un cúmulo galáctico

OBSERVATORIO ALMA/DICYT Un equipo de investigadores usó el Atacama Large Millimeter/submillimeter Array (ALMA) para obtener una imagen de radio de un “agujero” alrededor de un cúmulo galáctico situado a 4.800 millones de años luz de la Tierra. Se trata de la imagen de mayor resolución obtenida a la fecha de un agujero de este tipo, provocado por el efecto Sunyaev-Zel’dovich (efecto SZ). La imagen demuestra la capacidad de ALMA para estudiar la distribución y la temperatura del gas presente alrededor de los cúmulos de galaxias a través del efecto SZ.

Un equipo de investigación dirigido por Tetsu Kitayama, profesor de la Universidad Toho (Japón), usó ALMA para estudiar el gas caliente de un cúmulo galáctico. Este gas es un elemento clave para comprender la naturaleza y la evolución de los cúmulos galácticos. Aunque no emite ondas de radio detectables por ALMA, el gas caliente dispersa las ondas de radio del fondo cósmico de microondas y produce un “agujero” alrededor del cúmulo galáctico. Es el llamado efecto Sunyaev-Zel’dovic.

La imagen muestra la medición del efecto SZ en el cúmulo galáctico RX J1347.5-1145 obtenida con ALMA (azul).Créditos: ALMA(ESO/NAOJ/NRAO), Kitayama et al., telescopio espacial Hubble NASA/ESA.

Los investigadores observaron el cúmulo galáctico RX J1347.5-1145 conocido por su fuerte efecto SZ, y lo han estudiado reiteradas veces con radiotelescopios. Por ejemplo, el radiotelescopio Nobeyama de 45 metros, operado por el Observatorio Astronómico Nacional de Japón, reveló una distribución desigual del gas caliente en este cúmulo, un fenómeno que no se había detectado en las observaciones de rayos X. Para entender mejor esta heterogeneidad, los astrónomos necesitan realizar observaciones de mayor resolución. Sin embargo, los objetos relativamente homogéneos y amplios como el gas caliente de los cúmulos galácticos son difíciles de observar en alta resolución con radiointerferómetros.

Para solucionar este problema, ALMA usó el Atacama Compact Array, también conocido como Morita Array, la mayor contribución japonesa al proyecto. Sus antenas de menor diámetro y su configuración más compacta permiten obtener un campo de visión más amplio. Con los datos de este observatorio, los astrónomos pueden medir con precisión las ondas de radio de objetos que describen un ángulo amplio en el cielo.

Con ALMA, los astrónomos obtuvieron una imagen del efecto SZ de RX J1347.5-1145 con el doble de resolución y una sensibilidad diez veces superior a la de las observaciones anteriores. Esta es la primera imagen de un efecto SZ generada por ALMA, una imagen que se condice con las observaciones anteriores e ilustra mejor la distribución de la presión en el gas caliente. La imagen demuestra la gran capacidad de ALMA para observar el efecto SZ y revela que se está produciendo una colisión gigante en el cúmulo galáctico.

“El efecto SZ se predijo por primera vez hace cerca de 50 años”, explica Kitayama. “Es un efecto muy débil y ha sido muy difícil obtener imágenes de alta resolución. Gracias a ALMA, esta vez dimos un gran y esperado paso en la búsqueda de un nuevo camino para estudiar la evolución cósmica”.

Detectado el polvo interestelar de una de las galaxias más lejanas conocidas

Un equipo científico internacional ha observado, por primera vez, el polvo interestelar de una de las galaxias más lejanas que se conocen gracias al Atacama Large Millimeter/submillimeter Array (ALMA), en Chile. El estudio, dirigido por Nicolas Laporte, astrónomo de la University College London (UCL) en Reino Unido, y anteriormente investigador del Instituto de Astrofísica de Canarias (IAC), se publica hoy en la revista especializada The Astrophysical Journal Letters y aporta luz sobre el ciclo de vida de las primeras estrellas del Universo.

“La galaxia A2744_YD4 no es sólo la más lejana observada por ALMA –explica Nicolas Laporte- sino que, además, la detección de tanto polvo indica que supernovas tempranas debieron haberla contaminado previamente. Esta observación es también la detección de oxígeno más distante en el universo”.

El polvo cósmico se compone de silicio, carbono y aluminio, con granos tan pequeños como una millonésima de centímetro. Estas partículas se forman en el interior de las estrellas y, cuando mueren, se dispersan por el espacio, especialmente al explotar como supernovas, la última fase de las estrellas masivas. Hoy, este polvo es abundante y vital para la formación de estrellas, planetas y moléculas complejas. Sin embargo, en el universo temprano, antes de que murieran las primeras estrellas, era escaso.

El polvo detectado en A2744_YD4 se observó apuntando las antenas de ALMA hacia un cúmulo de galaxias, denominado Abell 2744, que actuó como una lente gravitacional. Debido a este fenómeno, el cúmulo interviene como si fuera un telescopio gigante que magnifica alrededor de 1,8 veces la galaxia A2777_YD4 y permite observar aún más lejos, es decir, antes en el tiempo.

Las siguientes observaciones se hicieron con el Very Large Telescope (VLT), en Chile, y confirmaron la gran distancia a la que se encuentra A2744_YD4, cuando el Universo tenía 600 millones de años y se estaban formando las primeras estrellas y galaxias. “También utilizamos imágenes obtenidas con el Telescopio Espacial Spitzer –apunta Alina Streblyanska, astrofísica del IAC- para calcular el desplazamiento al rojo aproximado (a partir del cual se puede determinar la distancia a la que se encuentra la galaxia) incluso antes de obtener su espectro”. “Los datos de Spitzer, junto con los del Telescopio Espacial Hubble y el VLT en el infrarrojo cercano fueron cruciales para estimarlo en 8,4”, añade Ismael Pérez Fournon, también investigador del IAC y de la Universidad de La Laguna (ULL).

La detección de polvo de esta época tan temprana revela nuevas pistas del momento en que las primeras estrellas explotaron como supernovas e inundaron el Cosmos de luz, y calcular este “despertar cósmico” es uno de los “Santos Griales” de la astronomía moderna.

El equipo estimó que la galaxia A2744_YD4 tiene una cantidad de polvo equivalente a 6 millones de veces la masa del Sol, mientras que todas sus estrellas equivalen a 2.000 millones de masas solares. También pudieron medir la tasa de formación estelar y encontraron que las estrellas se están formando a un ritmo de 20 masas solares al año, muy rápido si se compara con una masa solar al año en la Vía Láctea.

“Esta velocidad no es inusual en una galaxia tan distante, pero ayuda a conocer a qué ritmo se formó el polvo en ella”, comenta el coautor del estudio Richard Ellis, astrónomo del European Southern Observatory (ESO) y de la UCL. “El tiempo que lleva este proceso es de unos 200 millones de años, así que estamos observando a A2744_YD4 poco después de su formación”.

Por tanto, las estrellas empezaron a formarse aproximadamente 200 millones de años antes de la luz que se ha podido observar ahora. Se abre así una gran oportunidad para que ALMA y otros grandes telescopios comiencen a explorar la época más temprana posible con los telescopios e instrumentación actuales, en la que se “encendieron” las primeras estrellas y galaxias del Universo. Tras 13.000 millones de años, nuestro Sol, nuestro planeta y nuestra existencia son fruto de ellas. Al estudiar su formación, vida y muerte, estamos explorando nuestros orígenes.

“Con más observaciones de este tipo –concluye Nicolas Laporte- podemos rastrear la formación inicial de las estrellas y cómo se enriquecieron químicamente en épocas aún más tempranas del Universo. La perspectiva de futuro es apasionante”.

Referencia biblioráfica:
“Dust in the Reionization Era: ALMA Observations of a z =8.38 Gravitationally-Lensed Galaxy” por Laporte et al. The Astrophysical Journal Letters. https://arxiv.org/abs/1703.02039

Astrónomos miran por primera vez a la zona donde se forma la mayoría de las estrellas

Este logro fue posible usando el observatorio Karl G. Jansky Very Large Array (VLA), de la Fundación Nacional de Ciencia de EE. UU., y el Atacama Large Millimeter/submillimeter Array (ALMA)

OBSERVATORIO ALMA/DICYT Un equipo de astrónomos observó por primera vez el lugar exacto donde nació la mayoría de las estrellas presentes hoy en el Universo. Este logro fue posible usando el observatorio Karl G. Jansky Very Large Array (VLA), de la Fundación Nacional de Ciencia de EE. UU., y el Atacama Large Millimeter/submillimeter Array (ALMA), para observar galaxias distantes tales y como eran hace unos 10.000 millones de años.

En ese entonces, el Universo se encontraba en pleno auge de formación estelar. De hecho, la mayoría de las estrellas que vemos hoy nació en esa época.

“Sabíamos que las galaxias de esa época formaban estrellas con profusión, pero no sabíamos cómo eran esas galaxias, porque están rodeadas de tanto polvo que casi no nos llega luz visible de ellas”, comenta Wiphu Rujopakarn, del Instituto Kavli de Física y Matemática del Universo de la Universidad de Tokio (Japón) y de la Universidad Chulalongkorn (Bangkok, Tailandia), autor principal del artículo donde se consigna este hallazgo.

A diferencia de la luz visible, las ondas de radio pueden atravesar el polvo. Aun así, para revelar los detalles de galaxias tan distantes y tenues, los astrónomos tuvieron que realizar las observaciones más sensibles hechas hasta entonces con el VLA.

Las nuevas observaciones realizadas con el VLA y con ALMA permitieron responder preguntas de larga data sobre los mecanismos responsables de todo el proceso de formación estelar en esas galaxias. Los astrónomos descubrieron que estos intensos procesos de formación se daban frecuentemente a lo largo y ancho de todas las galaxias observadas, mientras que en las galaxias de hoy estos procesos se dan con semejante profusión en zonas mucho más pequeñas.

Para conseguir este hallazgo los astrónomos estudiaron el campo ultraprofundo del Hubble, una pequeña porción del cielo escudriñada por el telescopio espacial Hubble de la NASA desde 2003. El Hubble tomó fotografías de muy larga exposición en esa área para detectar galaxias del Universo lejano, y numerosos programas de observación siguieron haciendo lo mismo con otros telescopios.

“Usamos el VLA y ALMA para alcanzar las profundidades de estas galaxias, más allá del polvo que oculta sus entrañas a la vista del Hubble”, explica Kristina Nyland, del Observatorio Radioastronómico Nacional de Estados Unidos (NRAO, en su sigla en inglés). “El VLA nos mostró dónde ocurría la formación de estrellas, y ALMA reveló el frío gas que sirve de combustible para ese proceso”, agrega.

“En este estudio realizamos la observación más sensible a la fecha con el VLA”, afirma Preshanth Jagannathan, también de NRAO. “Si tomaras tu teléfono celular, que transmite una señal de radio muy débil, y lo alejaras a más del doble de la distancia que hay hasta Plutón, cerca de los límites exteriores del Sistema Solar, su señal nos llegaría más o menos tan fuerte como la de estas galaxias que detectamos”, compara.

El Observatorio ALMA mejora su habilidad para encontrar agua en el Universo

Con los nuevos receptores de Banda 5 recién instalados, ALMA ahora abre sus ojos a una nueva sección de este espectro de radio, ofreciendo nuevas y emocionantes posibilidades de observación

OBSERVATORIO ALMA/DICYT Con la primera luz de su Banda 5, el Atacama Large Millimeter/submillimeter Array (ALMA), en Chile, ha comenzado a observar en un nuevo rango del espectro electromagnético. Esto ha sido posible gracias a unos nuevos receptores, instalados en las antenas del telescopio, que pueden detectar las ondas de radio con longitudes de onda de 1,4 a 1,8 milímetros, un rango que ALMA no había explotado previamente. Esta actualización permite a los astrónomos detectar señales débiles de agua en el universo cercano.

ALMA observa las ondas de radio del Universo en el extremo de más baja energía del espectro electromagnético. Con los nuevos receptores de Banda 5 recién instalados, ALMA ahora abre sus ojos a una nueva sección de este espectro de radio, ofreciendo nuevas y emocionantes posibilidades de observación.

Receptor de Banda 5 integrado en un Front End junto al resto de los receptores de otras bandas (3 a 10). Crédito: N. Tabilo – ALMA (ESO/NAOJ/NRAO)

El científico a cargo del Programa Europeo de ALMA, Leonardo Testi, explica su importancia: “Los nuevos receptores harán mucho más fácil la detección de agua (un requisito previo para la vida tal y como la conocemos) en nuestro Sistema Solar y en regiones más distantes de nuestra galaxia y más allá. También permitirán a ALMA buscar carbono ionizado en el universo primordial”.

La ubicación única de ALMA, a 5.000 metros de altitud en el árido llano de Chajnantor (Chile), es el primer factor que hace que estas observaciones sean posibles. Como el agua también está presente en la atmósfera de la Tierra, los observatorios ubicados en entornos menos elevados y menos áridos tienen más dificultades para identificar el origen de la emisión que viene del espacio. Ahora, en esta longitud de onda, y gracias a la gran sensibilidad de ALMA y su alta resolución angular, pueden detectarse incluso débiles señales de agua en el universo local.

Los primeros receptores fueron construidos y entregados a ALMA en el primer semestre de 2015 por un consorcio formado por la Escuela de Investigación para la Astronomía de Holanda (NOVA, por su sigla en holandés), y el GARD, en colaboración con el Observatorio Nacional de Radioastronomía de EE. UU. (NRAO, por su sigla en inglés), que contribuyó aportando el oscilador local al proyecto. “El mayor desafío ha sido integrar, probar y preparar los nuevos receptores para los ensayos sin afectar las observaciones científicas de Ciclo 4 que se realizaban simultáneamente” explica Gianni Marconi, miembro del equipo, y agrega que “esto fue un éxito gracias al gran esfuerzo de todos los ingenieros y astrónomos de ALMA involucrados”. El proceso de integración para equipar las antenas con el nuevo receptor todavía se está llevando a cabo y será finalizado el próximo año, a tiempo para ofrecer esta nueva e importante ventana de observación a la comunidad científica en el próximo ciclo de observación.

Para probar los receptores recién instalados se llevaron a cabo observaciones de varios objetos, incluidas las galaxias en colisión Arp 220 (una enorme región de formación estelar localizada cerca del centro de la Vía Láctea) y una polvorienta supergigante roja próxima a explotar como supernova, lo que pondrá fin a su vida.

Para procesar los datos y comprobar su calidad, los astrónomos, junto con técnicos del Observatorio Europeo Austral (ESO, por su sigla en inglés) y del Centro Regional de ALMA (ARC, por su sigla en inglés) en Europa, se reunieron en el Observatorio Espacial de Onsala, en Suecia, para una “Semana Intensiva de Banda 5”, albergada por el nodo nórdico del ARC. Los resultados finales acaban de ponerse a disposición de la comunidad astronómica de todo el mundo de forma abierta.

Robert Laing, miembro del equipo en ESO, es optimista sobre las perspectivas para las observaciones de ALMA en la Banda 5: “Es muy emocionante ver los primeros resultados del ALMA en Banda 5 usando un conjunto limitado de antenas. En el futuro, la alta sensibilidad y la resolución angular de todo el conjunto de ALMA nos permitirán hacer estudios de agua en una amplia gama de objetos, incluyendo tanto estrellas en formación como evolucionadas, además de en el medio interestelar y en regiones cercanas a agujeros negros supermasivos”.

Astrónomos consiguen medir el tamaño de las semillas planetarias

Los astrónomos creen que los planetas se forman al aglomerarse partículas de polvo y gas, pero desconocen los pormenores del proceso

OBSERVATORIO ALMA/DICYT Un equipo de investigadores usó el Atacama Large Millimeter/submillimeter Array (ALMA) para realizar por primera vez una medición precisa de las diminutas partículas de polvo que rodean una joven estrella a partir de la polarización de las ondas de radio. Este importante hito en el estudio de la formación planetaria alrededor de estrellas jóvenes fue posible gracias a la gran sensibilidad de ALMA, que permite detectar ondas de radio polarizadas.

Los astrónomos creen que los planetas se forman al aglomerarse partículas de polvo y gas, pero desconocen los pormenores del proceso. Uno de los principales enigmas es cómo unas partículas de polvo de apenas un micrómetro se unen para formar planetas rocosos de 10.000 kilómetros. La dificultad para medir el tamaño de las partículas ha impedido a los astrónomos hacer un seguimiento del crecimiento del polvo.

Akimasa Kataoka, investigador becado por la Fundación Humboldt que se desempeña en la Universidad de Heidelberg y el Observatorio Astronómico Nacional de Japón (NAOJ), asumió este desafío. Junto con sus colaboradores, el investigador había predicho que, alrededor de las estrellas jóvenes, las ondas de radio emitidas por las partículas de polvo tienen características de polarización únicas. El equipo también señaló que la intensidad de las emisiones polarizadas permite calcular el tamaño de las partículas de polvo mejor que otros métodos.

Para poner a prueba su teoría, el equipo encabezado por Kataoka observó la joven estrella HD 142527 con ALMA y descubrió, por primera vez, el patrón de polarización único del disco de polvo que la rodea. Tal como habían predicho, la polarización presenta una dirección radial en gran parte del disco, pero en los bordes esta se vuelve perpendicular a la dirección radial.

Al comparar la intensidad medida de las emisiones polarizadas con las predicciones teóricas, los investigadores determinaron que las partículas de polvo tienen como máximo 150 micrómetros. Esta es la primera vez que se calcula el tamaño del polvo a partir de la polarización. Para sorpresa de los investigadores, el tamaño calculado es más de 10 veces más pequeño de lo que se había predicho.

“En los estudios anteriores, los astrónomos habían calculado el tamaño a partir de las emisiones de radio suponiendo que las partículas de polvo son esféricas””, explica Kataoka. “En nuestro estudio, observamos las ondas de radio dispersas a través de la polarización, que proporciona información independiente a la de la emisión térmica del polvo. Esta diferencia tan grande en el tamaño de las partículas de polvo significa que los cálculos anteriores pueden ser erróneos”.

Para resolver esta contradicción, el equipo consideró la existencia de partículas de polvo esponjosas y de formas complejas, en vez de limitarse a partículas esféricas. A nivel macroscópico estas partículas son grandes, pero a nivel microscópico, cada diminuta sección de una partícula de polvo emite ondas de radio y genera una polarización de características únicas. En este estudio, los astrónomos determinaron estas características “microscópicas” mediante observaciones de polarización. Esto podría motivar a los astrónomos a reinterpretar datos de observaciones anteriores.

“La fracción de polarización de las ondas de radio del disco de polvo alrededor de HD 142527 corresponde apenas a un pequeño porcentaje. Gracias a la alta sensibilidad de ALMA, pudimos detectar estas señales tan débiles para obtener información sobre el tamaño y la forma de las partículas de polvo”, explica Kataoka.

“Este es el primer paso en la investigación sobre la evolución del polvo con polarimetría, y creo que el futuro nos deparará grandes hallazgos”.