Ingeniería

Haces retorcidos de luz para transmitir datos a velocidad elevadísima


(NCYT) A modo de comparación, muchas conexiones de banda ancha de internet no pueden sobrepasar los 30 megabits por segundo. El sistema de haces retorcidos de luz es capaz de transmitir unas 85.000 veces más datos por segundo.

La tecnología desarrollada por el equipo de Alan Willner, profesor de ingeniería electrónica en la Escuela Viterbi de Ingeniería, dependiente de la Universidad del Sur de California, podría ser usada para establecer enlaces de comunicaciones inalámbricas de alta velocidad entre vehículos espaciales entre los cuales no haya obstáculos, establecer enlaces inalámbricos de corta distancia para comunicaciones en la Tierra entre puntos que también estén a la vista el uno del otro, y quizá ser usada incluso para los cables de fibra óptica.

Tal como señala Willner, con la luz se pueden hacer cosas imposibles de hacer con la electricidad. En ese sentido, la luz es un conjunto de fotones que pueden ser manipulados de muchas maneras diferentes y a una velocidad muy alta.

Willner y sus colaboradores no son los inventores del concepto de retorcer haces de luz, pero sí quienes han puesto en práctica el concepto para un sistema de comunicaciones de alta velocidad.

Willner y sus colegas se han valido de técnicas de generación de hologramas de fase para manipular ocho haces de luz de modo que cada uno, al propagarse por un espacio libre de obstáculos, se retuerza en forma helicoidal como las hebras de ADN. Cada uno de los haces tiene su propia torsión individual y puede codificar los bits de datos "0" ó "1", lo cual hace que cada uno sea un flujo de datos independiente, una situación comparable en algunos aspectos a la disponibilidad de distintas frecuencias de recepción sintonizables en una radio o un televisor.

En su demostración, los investigadores transmitieron datos a través de un espacio libre de obstáculos en un laboratorio, tratando de simular el tipo de comunicación que podría entablarse entre satélites en el espacio.

Entre los próximos pasos a dar en este campo de investigación, estará profundizar en cómo se podría adaptar esta tecnología para su uso en cables de fibra óptica como los empleados comúnmente para transmitir datos a través de internet.

En el trabajo de investigación y desarrollo también han participado Jian Wang (ahora en la Universidad de Ciencia y Tecnología de Huazhong en China), Jeng-Yuan Yang, Irfan M. Fazal, Nisar Ahmed, Yan Yan, Hao Huang, Yongxiong Ren y Yang Yue, todos de la Universidad del Sur de California, así como Samuel Dolinar del Laboratorio de Propulsión a Chorro de la NASA, en Pasadena, California, y Moshe Tur de la Universidad de Tel Aviv en Israel.

El trabajo del equipo se basa en investigaciones realizadas por Leslie Allen, Anton Zeilinger, Miles Padgett y otros colegas suyos en varias universidades europeas.





Más artículos
GPS para interiores
Vigilar raíles o carreteras con láser
Rigidez del pavimento
Atrapar dióxido de carbono
Avances en el ITER
Desalinizar agua en zonas áridas
Nuevo chip de memoria
Analizar sangre sin extraerla
Robots para ordenar habitaciones
Fabricación de moldes para piezas metálicas
Ventanas con células solares
Músculos artificiales
Paneles solares subacuáticos
Circuitos resistentes a la radiactividad
Sonidos derivados de estrellas
Transmitir datos a velocidad elevadísima
Autorreparación de de grietas en carreteras
Sistema cuántico de almacenar datos
Robots para ordenar habitaciones
Nanocable coaxial