Teoría de partículas elementales - Las Fuerzas Fundamentales 
Índice
1. Prefacio
2. Introducción histórica de los constituyentes de la materia
3. Partículas Elementales
4. Las Fuerzas Fundamentales
5. El Modelo Estándar
6. Cuestiones pendientes de la Física de Partículas
7. Bibliografia
8. Sobre el autor
Las Fuerzas Fundamentales
Como hemos visto, el estudio de los componentes de la materia nos ha llevado también a introducir dos nuevas fuerzas en el campo de la Física. Hasta entonces, todo podía explicarse gracias al campo gravitatorio y al campo electromagnético, actualmente se consideran cuatro interacciones o fuerzas fundamentales, las cuales en orden descendente en intensidad son: fuerza nuclear fuerte, fuerza electromagnética, fuerza nuclear débil y fuerza gravitacional.

Para tener una idea de la magnitud relativa de estas fuerzas, supongamos que en una escala de intensidades, en la que la fuerza gravitatoria tuviese magnitud 1, la fuerza débil tendría un valor de 10+34 (un uno seguido de 34 ceros), la fuerza electromagnética tendría un valor de 10+37 (un uno seguido de 37 ceros) y la fuerza fuerte tendría un valor de 10+39 (un uno seguido de 39 ceros).

Igual que con las partículas, una fuerza es considerada como fundamental en función de lo que se conoce en ese momento. De esa manera puede entenderse cómo la unificación de las fuerzas eléctricas y magnéticas llevada a cabo por Maxwell redujo dos fuerzas (magnética y eléctrica) en una sola interacción: el campo electromagnético.

Para clarificar el ámbito de las fuerzas fundamentales mencionare el alcance de cada fuerza. La fuerza fuerte es la responsable de que los protones y los neutrones se mantengan unidos dentro del núcleo. Si no fuera por el dominio que ejerce la fuerza fuerte, la repulsión entre los protones haría inestable el núcleo; los protones se dispersarían y el núcleo no podría existir, por tanto su alcance es muy pequeño (10-15 m). La fuerza fuerte o nuclear fuerte tiene un rango de acción ligeramente menor que el tamaño del núcleo, esto es: actúa solo sobre las partículas más vecinas. La fuerza electromagnética afecta a todas las partículas que poseen carga eléctrica y su alcance es infinito, la constante de interacción de esta fuerza es un número adimensional denominado constante de la estructura fina (de valor aproximado 1/137). Por su lado, la fuerza débil o nuclear débil actúa entre partículas elementales y es responsable de algunas reacciones nucleares. Por ejemplo, en la desintegración radiactiva de los núcleos que provoca su escisión en varios fragmentos, además la fuerza nuclear débil es importante en la velocidad de reacción de algunas reacciones nucleares que ocurren en estrellas como el sol (de hecho la vida media del sol está determinada por las características de esta fuerza), y en todos los procesos de interacción entre los neutrinos y la materia. Es una fuerza de corto alcance, 10-16m. Por último la fuerza gravitatoria es universal, a ella se someten todas las partículas elementales sin excepción, sin embargo debido a su poca magnitud no juega un papel importante en el micromundo.

Cuando se empieza a hablar de las fuerzas fundamentales es obligado hablar también de su unificación.

Newton en 1686 mostró que la gravedad celeste y la terrestre podían considerarse dentro de una misma teoría: la gravitación universal. Ésta fue la primera unificación. Newton explico cómo se comportan los cuerpos ante la gravedad, pero fue Einstein el primero que propuso un modelo teórico para explicar el origen de la gravedad. En la teoría de la relatividad general, las partículas siguen trayectorias rectilíneas siempre, de tal manera que la gravedad o campo gravitatorio, según el cual las partículas masivas "tuercen" su trayectoria es una consecuencia de la deformación del espacio-tiempo causada por la masa.

Aunque fueron Faraday y Oersted los primeros que observaron la relación de los fenómenos eléctricos y magnéticos, fue Maxwell quien en 1864 le dio una estructura formal a lo que ahora se conoce como teoría electromagnética. Ésta fue la segunda unificación. Existe una interesante simetría en las ecuaciones de Maxwell la cual sugiere que el hecho de la existencia de cargas eléctricas, "obliga" también la existencia de cargas magnéticas, es decir la carga eléctrica es a la vez responsable de los campos eléctricos y los campos magnéticos. Hay incluso varias investigaciones documentadas relacionadas con la búsqueda de estas cargas magnéticas, las cuales se denominan "el monopolo magnético."

Alrededor de 1968, Weinberg y Salam trabajando independientemente, mostraron la conexión que subyace entre la fuerza electromagnética y la fuerza nuclear débil. Esta tercer unificación dio lugar a la llamada fuerza electrodébil. Este enfoque se consiguió con la llamada Teoría Cuántica de Campos, que aplicada a las interacciones electromagnética y débil se denomina electrodinámica cuántica, en ella, tal y como se ha comentado anteriormente, se considera una interacción entre dos partículas como un intercambio de unas partículas especiales llamadas partículas o portadores de fuerza. Estas partículas de fuerza son bosones y podemos decir que la interacción electromagnética depende del intercambio de fotones, mientras que en la fuerza nuclear débil interviene el intercambio de dos tipos de bosones muy masivos llamados W y Z. Para la fuerza nuclear fuerte se postuló la existencia de una portador que actúa a un nivel más profundo, son los gluones, unos bosones que no tienen masa. La interacción fuerte queda así explicada con la teoría de la Cromodinámica Cuántica.

Debido a que la formulación de la Cromodinámica Cuántica y de la ElectroDinámica Cuántica es, en esencia la misma, parece plausible pensar que puede existir alguna unificación entre ambas, aunque de hecho aún no se ha encontrado.

De las cuatro fuerzas fundamentales, tenemos tres (que podrían ser dos si la unificación de la Teoría Cuántica de Campo y la Cromodinámica Cuántica se diera), de esta tres, aún no hemos podido saber si son la misma fuerza o tienen características diferentes. De ellas, la más complicada de introducir es la gravedad. Recordemos que el campo gravitatorio no se basa en el intercambio de partículas sino en la deformación del espaciotiempo; de todas maneras existen teorías cuánticas que pretenden unificar la gravedad postulando la partícula de intercambio, que aunque no está descubierta, se denominaría el gravitón.

Otra propuesta más a las unificaciones fue hecha en 1921 por un matemático alemán llamado Theodor Kaluza. Él mostró cómo, considerando 5 dimensiones, se puede obtener el electromagnetismo y la gravitación en una sola teoría. Al introducir las otras fuerzas fundamentales, la teoría no funciona correctamente, aunque existen estudios donde trabajando con más dimensiones se busca la ansiada unificación. Estas teorías no son teorías cuánticas al no introducir la idea de una interacción como un intercambio de partícula, en estas teorías las fuerzas se explican como una propiedad del espacio (tal y como sucede con la gravedad). Se denominan las teorías de las supercuerdas, que pretenden explicar toda la física mediante la introducción de unas diminutas cuerdas de materia muy densa, estas cuerdas son muy pequeñas, pues no tienen más de 10-35 m de largo. Todas las cuerdas son lazos donde los fermiones y los bosones, que son las partículas elementales asociadas a la materia y a las interacciones respectivamente, corresponden a ondas que viajan en la dirección de las manecillas del reloj para el caso de los fermiones y en dirección contraria en el caso de los bosones. En las teorías de supercuerdas; cada uno de los infinitos modos posibles de vibración, (armónicos y modos fundamentales de vibración), correspondería a una partícula diferente. Esto implica la existencia de un número infinito de partículas elementales. Todo esto es relativamente fácil de asimilar, ¡pero lo que no les he dicho es que estas cuerdas vibran en un espacio que tiene de 10 a 26 dimensiones!

La meta final de todas las unificaciones es encontrar una única fuerza que explique todas las interacciones que observamos en la naturaleza. Las teorías que describen el proceso de unificación de las fuerzas fundamentales se llaman 'teorías de supersimetrías. Pero hay que tener cuidado, ya que, como se ha dicho antes, una fuerza es considerada como fundamental según los conocimientos científicos existentes en ese momento.


Más artículos sobre Física
Teoría de partículas elementales
La carga eléctrica

Novedades

Publicidad


Mauricio Luque Hola.

Me llamo Mauricio Luque y soy el responsable de que este sitio web funcione.
Si tienes alguna queja o quieres hacer alguna propuesta o sugerencia, ponte en contacto conmigo a través de la página "Contactar" de este sitio web o a través de mi perfil en Facebook haciendo click aquí.

Gracias, por lo pronto, por visitar estas páginas.