Astronomía Archive

Inteligencia artificial para estudiar el Sol

Por primera vez, investigadores del Instituto de Astrofísica de Canarias aplican técnicas de aprendizaje automático para estudiar los movimientos horizontales del plasma en la superficie solar

IAC/DICYT Muchos de los fenómenos que tienen lugar en la atmósfera solar están controlados por los movimientos del plasma, especialmente en la fotosfera, la capa superficial del Sol y visible a simple vista mediante grandes telescopios. Medir la velocidad del movimiento vertical es relativamente fácil gracias al efecto Doppler, que produce un desplazamiento de las líneas de su espectro proporcional a la velocidad. En cambio, medir cómo se mueve el plasma de forma paralela a la superficie es mucho más complicado porque en este caso el efecto Doppler no opera. Sin embargo, gracias a técnicas de inteligencia artificial, un equipo científico del IAC ha desarrollado un método –una red neuronal- capaz de medir ese movimiento horizontal automáticamente. Los resultados del estudio se han publicado recientemente en Astronomy & Astrophysics.

En Física Solar, se suelen medir estas velocidades tomando varias imágenes de la superficie del Sol y se compara cómo se mueven los gránulos de una imagen a la anterior. Es una forma bastante intuitiva y habitual de medir velocidades en la vida diaria. Por ejemplo, cuando queremos cruzar una calle, estimamos la velocidad a la que circula un coche para saber si podemos hacerlo comparando su posición en unos pocos segundos. El problema de aplicar este método en la superficie solar es que produce estimaciones poco detalladas y solo permite detectar movimientos de estructuras mayores de 1000 km y que se muevan durante un periodo largo de tiempo.

Para hacer un cálculo más preciso de las velocidades horizontales en la fotosfera, varios investigadores del Instituto de Astrofísica de Canarias (IAC) han desarrollado un método basado en el “aprendizaje profundo” (deep learning en inglés). Este conjunto de técnicas de inteligencia artificial se han utilizado para asuntos tan dispares como desarrollar una inteligencia artificial que juegue al conocido juego de mesa Go (AlphaGo), la conducción automática de coches o el diagnóstico de enfermedades. Ahora, por primera vez, se han aplicado estas técnicas en el Sol, y el equipo científico ha entrenado una red neuronal, “DeepVel”, capaz de calcular la velocidad en cada pixel de la imagen y para cada instante de tiempo a partir de dos fotos consecutivas. “La mejora con respecto a los métodos anteriores es tan grande –explica Andrés Asensio Ramos, investigador del IAC y primer autor del proyecto- que creemos que el aprendizaje profundo nos permitirá extraer mucha más información de las observaciones en diferentes campos de la Física Solar”.

Deep learning o aprendizaje profundo

El aprendizaje profundo es una de las de técnicas de aprendizaje automático que permite a los ordenadores aprender a resolver problemas por sí mismos. Consiste en desarrollar e implementar algoritmos matemáticos formados por piezas relativamente simples pero muy interconectadas que sirven como base para generalizar comportamientos. Los sistemas de aprendizaje profundo más usados son las redes neuronales profundas, que intentan imitar el comportamiento del cerebro humano y su gran conectividad. Cuando se introducen datos, estos algoritmos los tratan en múltiples capas (en forma de cascada) y se van adaptando hasta ser capaces de reconocer patrones en los datos de entrenamiento. A partir de ese momento, pueden aprender automáticamente a resolver problemas nuevos.

“DeepVel” es capaz de detectar en la atmósfera solar vórtices muy pequeños, de tan solo unos centenares de kilómetros de diámetro, y que pueden durar menos de un minuto. “Parecen estar relacionados con acumulaciones de campos magnéticos que aparecen en las zonas menos magnetizadas del Sol, es decir, en calma”, apunta Iker S. Requerey, científico del IAC durante el desarrollo de este trabajo y otro de los autores del mismo. Desde hace unos años se sabe que la contribución del magnetismo en estas zonas es muy importante, incluso más de lo que se creía, lo que puede afectar al calentamiento de la corona solar, la capa más externa de su atmósfera. “Con DeepVel podremos estudiar los vórtices en el futuro, caracterizarlos y ver si están relacionados con la concentración de campos magnéticos en la fotosfera”, concluye Nikola Vitas, astrofísico del IAC que también ha participado en este estudio.

Referencia bibliográfica
“DeepVel: deep learning for the estimation of horizontal velocities at the solar surface”, por A. Asensio Ramos, I. S. Requerey y N. Vitas. A. Asensio Ramos, I. S. Requerey and N. Vitas, 2017, A&A, 604, A11.
Artículo online: https://doi.org/10.1051/0004-6361/201730783

El Gran Telescopio de Canarias estrena el MEGARA

El próximo lunes 24 de julio tendrá lugar la primera luz de MEGARA, el nuevo instrumento del Gran Telescopio Canarias (GTC) que permitirá estudiar, con un detalle sin precedentes, la composición química y la dinámica de las galaxias en diferentes épocas del universo. MEGARA ha sido construido por un consorcio de instituciones nacionales e internacionales, encabezado por la Universidad Complutense de Madrid y en el que participa el Instituto de Astrofísica de Andalucía (IAA-CSIC).

MEGARA, acrónimo de Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía, busca cubrir un nicho único en la instrumentación actual, ya que permitirá resolver problemas científicos hasta ahora inabordables. “Todos los que hemos trabajado en este proyecto estamos entusiasmados con la posibilidad de ofrecer las capacidades únicas de MEGARA, y hacer del GTC la herramienta de referencia de los próximos años”, apunta el investigador principal, Armando Gil de Paz (UCM).

MEGARA será capaz de estudiar estrellas individuales fuera de nuestra galaxia, e incluso podrá analizar cómo se movían las estrellas y el gas hace más de diez mil millones de años, cuando se formaron las primeras galaxias. Para ello utilizará la tecnología más avanzada en fibras ópticas y en elementos dispersores, lo que se conoce como redes holográficas.

El uso de estas tecnologías en un instrumento con la capacidad de MEGARA de resolver la luz en sus componentes de energía, combinado con los diez metros de diámetros del espejo del GTC, sitúan a este instrumento a la vanguardia de la tecnología de observación astronómica. El desarrollo de MEGARA ha supuesto todo un reto, debido al gran número y complejidad de sus subsistemas, pero el proyecto se ha completado en un tiempo récord de menos de tres años.

Esto ha sido posible gracias al equipo de instituciones y empresas líderes en sus campos que han participado. “El IAA-CSIC ha desarrollado el programa de cálculo de las trayectorias de los posicionadores robóticos del modo de observación multiobjeto, que permitirá desplazar cada uno de los haces de fibra óptica a sus posiciones de observación en el plano focal con la precisión de veinticinco micras requerida”, señala Jorge Iglesias, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC) que participa en el proyecto.

El proyecto MEGARA está cofinanciado por la empresa pública GRANTECAN S.A.y las instituciones del consorcio: Universidad Complutense de Madrid, Instituto Nacional de Astrofísica, Óptica y Electrónica e Instituto de Astrofísica de Andalucía (IAA-CSIC), quienes han contribuido con más del 60% del presupuesto y que por ello recibirán tiempo de observación una vez que comience a funcionar el instrumento.

Catálogo actualizado de exoplanetas: 30 planetas habitables

El equipo del Telescopio Espacial Kepler ha presentado un catálogo actualizado de exoplanetas que incluye 219 nuevos planetas, de los cuales 10 se añaden a los 20 hasta ahora conocidos que tienen un tamaño similar  a la Tierra y están en la zona habitable de la estrella, que es la distancia que permite que el agua líquida se acumule en la superficie de un planeta rocoso.

Éste es el más extenso y detallado catálogo de exoplanetas publicado hasta la fecha. Con estos datos (disponibles públicamente en el NASA Exoplanet Archive) hasta ahora se han dscubierto 4.034 exoplanetas, de los cuales 2.335 ya han sido verificados; de los 50 planetas candidatos a “primos” de la Tierra, 30 también han sido verificados.

Este catálogo de la NASA va a servir para determinar la prevalencia en nuestra galaxia de planetas sin superficie sólida o que la tienen oculta tras una bajo una densa y profunda atmósfera. Hasta ahora, los datos del catálogo Kepler, indican que más de la mitad de los exo planetas son de este tipo. De hecho, en el Sistema Solar, así son los mayores planetas, los situados más allá del Cinturón de Asteroides, empezando por el gigantesco Júpiter y terminado en el azul Neptuno. Por supuesto, este tipo de planetas gaseosos son absolutamente inadecuados para el desarrollo de vida.

Otro dato curioso descubierto tras el análisis de los ingentes detos proporcionados por el Kepler, es que casi el setenta y cinco por ciento de los planetas rocosos descubiertos hasta la fecha son mayores que la propia Tierra. Aunque no es descartable que se trate simpemente de un problema de calidad en las observaciones, también es pòsible que exista alsgún proceso en la formación planetaria que haga que una vez alcanzado cierto tamaño, los planetas “barran” todo el helio y e hidrógeno a su alrededor para convertirse en planetas de tamaño más cervcano a Neptuno que a la propia Tierra.

De todas maneras,mlos datos ahora conocidos son el fruto de observaciones realizadas en lo spasados alos y ahora mismo el Telescopio Espacial Kepler está recogiendo y es previsible que en los próximos años siga recogiendo más y más información para conocer exoplanetas cercanos a la Tierra y con la condición de habitables para la especie humana.

Pruebas nocturnas para robots interplanetarios

En estos días están teniendo lugar en el Parque Nacional del Teide, en las Islas Canarias, distintos ensayos diurnos y nocturnos del Rover Autonomy Testbed (banco de pruebas de autonomía de rovers),

En esta fotografía que vemos a continuación, uno de los dos sistemas desplazados hasta el archipiélago canario gira sobre sí mismo con las luces encendidas, en una prueba que simula el entorno poco iluminado de los polos lunares.

Los rovers que están siendo sometidos a pruebas por un equipo de GMV en España y el equipo Heavy Duty Planetary Rover de la ESA, están equipados con sistemas de ayuda a la navegación con y sin luz natural. entre los que se incluyen visores láser e iluminación. Con estos y con otros sensores, están diseñados para elaborar sobre la marcha mapas en 3D de su entorno, bien para operar de modo autónomo, bien para la asistencia al operador en modo de control remoto.

La principal razón por la que se han desplazado estos equipos y sus correspondientes técnicos hasta el Parque Nacional del Teide es la similitud del entorno rocoso con los posibles escenarios lunares a los que estarían destinados final mente los rovers. También hay que tener en cuenta todas las infraestructuras que ofrece la isla para temas astronómicos  el conocimiento de la región por muchos equipos de científicos de la materia.

Para no perderse detalle de la evolución de estos tests, se puede seguir en Twitter la etiqueta #DarkRover

#PorSiTeLoPerdiste – Girando en la noche, así pillaron al HPDR rover @KpRobotics en Tenerife: https://t.co/xN8OWa4PfC #DarkRover pic.twitter.com/HJJmTGxLov

— ESA España (@esa_es) 17 de junio de 2017

Un sueño de Einstein se hace realidad: pesar una estrella con la gravedad

La deflexión o desviación gravitatoria de la luz estelar que pasó alrededor del Sol durante el eclipse solar de 1919 proporcionó mediciones que confirmaron la teoría de la relatividad general de Einstein. Ahora, los científicos han utilizado una técnica parecida para registrar esas desviaciones luminosas en una estrella y medir su masa.

Unos cien años después de que Einstein desarrollara la teoría de la relatividad general, que ha revolucionado la forma en que los seres humanos comprendemos el universo, un grupo de investigadores liderados desde el Space Telescope Science Institute (EE UU) ha logrado determinar la masa de una estrella enana blanca a partir de sus leyes.

Hasta el momento, la posibilidad de medir la masa de una estrella en función de los efectos gravitacionales que esta ejerce sobre la luz pertenecía al plano teórico. En un artículo publicado en 1936 en Science, el propio Einstein sostenía que era imposible: “No hay esperanza de observar este fenómeno de forma directa”.

Ilustración de cómo la gravedad de una estrella enana blanca deforma el espacio y dobla la luz procedente de otra estrella distante situada detrás. El telescopio espacial Hubble registra el fenómeno. / NASA, ESA, and A. Feild (STScI)

Una de las predicciones clave de su relatividad general establecía que la curvatura del espacio cerca de cuerpos enormes, como las estrellas, hace que cualquier rayo de luz que pase cerca de estas se desvíe el doble de lo que se esperaría en función de las leyes de gravedad tradicionales.

El padre de la relatividad predijo que, cuando una estrella frontal se interpone entre nosotros y otra estrella situada de fondo, se produce un fenómeno llamado microlente gravitacional que genera un anillo de luz perfecto, también llamado ‘anillo de Einstein’.

Sin embargo, tras un siglo de avances tecnológicos, no se había logrado observar un escenario un poco diferente a este: dos estrellas apenas desalineadas que generen un anillo de Einstein asimétrico. Según Einstein, esta asimetría es importante debido a que ocasionaría que la estrella de fondo se viera desviada del centro, de forma que podría utilizarse para determinar la masa de otra estrella frontal localizada delante.

El equipo de científicos coordinados por Kailash Chandra Sahu desde el Space Telescope Science Institute buscó de forma proactiva esta rara alineación asimétrica en más de 5.000 estrellas. En marzo de 2014 descubrieron que la estrella enana blanca Stein 2051 B estaba en la posición perfecta, justo delante de una estrella de fondo.

La ayuda del telescopio espacial Hubble

Entonces, los científicos dirigieron el telescopio espacial Hubble para observar el fenómeno y midieron pequeños cambios en la posición aparente de la estrella de fondo a lo largo del tiempo. A partir de la información recopilada, los autores pudieron estimar que la masa de la enana blanca era equivalente aproximadamente al 68% de la de nuestro Sol.

“En concreto, la medición de esta deflexión en múltiples momentos nos permitió determinar la masa de Stein 2051 B –la sexta enana blanca más próxima al Sol– como 0,675 ± 0.051 masas solares”, señalan los autores en su estudio, que se publica esta semana en Science, a la vez que se presenta en la reunión de primavera que la American Astronomical Society celebra estos días en Austin (EE UU).

La medición directa de la masa de Stein 2051 B también ofrece datos importantes para comprender mejor la evolución de las enanas blancas, el tipo de estrellas más común en el universo. De hecho, la mayoría de las estrellas que se han formado en nuestra galaxia, incluido el Sol, se convertirán o son ya enanas blancas.

Referencia bibliográfica:
K.C. Sahu et al. “Relativistic deflection of background starlight measures the mass of a nearby white dwarf star”. Science, 7 de junio de 2017.

Descubren un exoplaneta gigante casi tan caliente como el Sol

Investigadores de 10 países, entre ellos Portugal, han descubierto un exoplaneta del tamaño de Júpiter y más caliente que la mayoría de las estrellas

CGP/DICYT Un planeta del tamaño de Júpiter que rodea a su estrella cada día y medio, con temperaturas más altas que la mayoría de las estrellas y con una gigantesta y brillante cola de gas, como un cometa. Esto es lo que ha encontrado un equipo internacional de astrónomos liderado por las universidades Ohio State y Vanderbilt (Estados Unidos) en órbita alrededor de una estrella masiva a la que han denominado KELT-9, ubicada a 650 años luz de la Tierra en la constelación Cygnus. El trabajo, en el que participa una entidad portuguesa, el Crow Observatoryde Portoalegre, acaba de publicarse en la revista Nature.

Con una temperatura que durante el día alcanza un máximo de 4.600 grados Kelvin (unos 4.326 grados Celsius), el recién descubierto exoplaneta es tan sólo 1.200 grados Kelvin (unos 926 grados Celsius) más frío que nuestro propio Sol. Se trata de una temperatura tan alta que podría causar que las moléculas se separaran y su atmósfera se evaporara.

La razón por la que este exoplaneta es tan caliente es que la estrella que orbita es más del doble de grande y casi el doble de caliente que el Sol. “KELT-9 emite tanta radiación ultravioleta que puede evaporar completamente el planeta”, apunta Keivan Stassun, profesor de la Universidad de Vanderbilt, quien ha dirigido el trabajo junto con Scott Gaudí.

El exoplaneta tiene otras características igual de inusuales. Por ejemplo, es un gigante gaseoso 2’8 veces más masivo que Júpiter pero sólo la mitad de denso, porque la radiación extrema de su estrella ha causado que su atmósfera se hinche como un globo. Debido a la cercanía entre ambas –están tan cerca como está la Luna de la Tierra-, el planeta por el día está perpetuamente bombardeado por radiación estelar y, como resultado, es tan caliente que moléculas como el agua, el dióxido de carbono y el metano no pueden formarse allí.

De este modo, si la estrella empieza a expandirse, engullirá al planeta. “KELT-9 se hinchará para convertirse en una estrella gigante roja en alrededor de mil millones de años”, asegura Stassun.
Este hallazgo, -realizado también por investigadores de Dinamarca, Italia, Japón, Hawai, Suiza, Australia, Alemania y Sudáfrica-, ayuda a mejorar la comprensión de los planetas que orbitan alrededor de estrellas masivas y muy calientes, que hasta la fecha ha sido limitado debido al pequeño número de observaciones disponibles.

Se sabe que existen miles de exoplanetas en tránsito, pero sólo seis se han encontrado en órbita alrededor de estrellas calientes de tipo A (que tienen temperaturas de 7.300-10.000 kelvin), y ninguna se ha encontrado alrededor de estrellas más calientes de tipo B. Anteriormente, el planeta más caliente conocido (alrededor de 3.300 kelvin) se encontró orbitando una estrella con una temperatura de alrededor de 7.430 kelvin. La estrella que orbita el exoplaneta gigante hallado tiene una temperatura estimada de alrededor de 10.170 kelvin, colocándose en la línea divisoria entre las estrellas de tipo A y B.

Referencia bibliográfica:
Gaudi, B.S., Stassun, K. G., Collins, K. C., Beatty, T.G., Zhou, G. et al. (2017). “A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host”. Nature. doi:10.1038/nature22392

Superburbujas en el medio interestelar

La detección en las galaxias en interacción de las “Antenas” ha sido posible gracias a un novedoso método – BUBBLY- desarrollado por investigadores el IAC y con el instrumento GHaFaS, instalado en el telescopio William Herschel.

Un equipo científico liderado por el Instituto de Astrofísica de Canarias (IAC), en colaboración con la Universidad Nacional Autónoma de México (UNAM), ha detectado y medido una “alfombra” de burbujas expendiéndose en el medio interestelar de las “Antenas”, un par de galaxias en interacción que se fusionarán en el futuro. Para este trabajo, publicado hoy en la revista Monthy Notices of the Royal Astronomical Society, han utilizado el Telescopio William Herschel (WHT) de 4,2 m, del Grupo de Telescopios Isaac Newton (ING), ubicado en el Observatorio del Roque de los Muchachos (Garafía, La Palma). El instrumento que han usado, GHaFaS, es capaz de obtener un mapa de las velocidades de una galaxia entera usando la emisión del hidrógeno ionizado en el medio interestelar.

A la izquierda: mapa de brillo superficial de “las Antenas” en la emisión de hidrógeno ionizado. Las zonas más brillantes son las zonas ocupadas por cúmulos de estrellas masivas. A la derecha: mapa de la velocidad de expansión de las burbujas detectadas en las Antenas, impulsadas por los vientos estelares y las explosiones de supernovas de las estrellas del cúmulo. Los colores dan valores de la velocidad de expansión en cada punto del mapa. La burbuja más grande tiene un tamaño de 1.500 años luz. Crédito: IAC

Para detectar las burbujas gigantes en los discos de las galaxias han utilizado “BUBBLY”, método desarrollado por algunos de los actuales autores, y que ya fue publicado en esta misma revista científica en 2015. Las burbujas gigantes las producen los vientos estelares y las explosiones de supernovas en cúmulos de estrellas muy masivas y calientes. Su tamaño depende de la cantidad de estrellas y su masa varía desde un par hasta mil años luz. A las más grandes se las denomina con frecuencia “superburbujas”.

En el estudio publicado hoy, basado en observaciones realizadas con el instrumento GHaFaS, han aplicado el método BUBBLY a las “Antenas”, donde la interacción entre las galaxias está causando grandes regiones de formación estelar, que dan lugar a numerosos cúmulos de estrellas rodeados por burbujas gaseosas en expansión. El equipo científico ha podido calcular la energía que expulsa cada una al medio interestelar, incluso las que son demasiado pequeñas para su detección completa. Próximamente, obtendrán los resultados de la muestra.

“La importancia de las burbujas –explica Artemi Camps-Fariña, investigador del IAC y primer autor de los artículos mencionados- es que nos permiten medir los efectos de la retroalimentación originados por los cúmulos de estrellas masivas de toda la galaxia. La importancia de este efecto se está reconociendo cada vez más, pues si no se tiene en cuenta, existen serias dificultades para formular teorías de formación y evolución de las galaxias”.

Sin las burbujas, las estrellas se formarían demasiado rápido y todo el gas disponible se habría consumido cuando el Universo tuviese una décima parte de su edad actual. Las galaxias estarían en un estado pasivo y no se formarían estrellas nuevas tal y como ocurre actualmente. Incluso es posible que los procesos que dieron lugar a la vida no hubieran tenido tiempo suficiente para surgir. Sin embargo, las superburbujas producidas por la retroalimentación frenan la condensación del gas del que nacen nuevas estrellas y ello ha permitido que las galaxias como la Vía Láctea formaran estrellas durante mucho más tiempo.

“Aunque la idea básica que hemos desarrollado no es nueva –apunta John Beckman, uno de los autores de ambos artículos- nuestra habilidad para medir las propiedades de las burbujas sí lo es y nos permite cuantificar el efecto. De esta forma podemos confrontar la teoría con las propiedades observadas de las galaxias”.

Artículo:“Physical properties of superbubbles in the Antennae galaxies”, por ArtemiCamps-Fariña, et al. Monthly Notices of the Royal Astronomical Society). https://arxiv.org/abs/1703.02902

Sobrevolando Titán

A primeras horas del día 22 de abril, la misión internacional Cassini-Huygens sobrevoló de cerca por última vez la mayor luna de Saturno, Titán, quedando a unos 1.000 km de su atmósfera.

Lo que vemos aquí es una imagen sin procesar enviada ayer a la Tierra y tomada ese sábado a las 18:42 GMT. Es una de las muchas que pueden consultarse en el archivo de imágenes sin procesar de Cassini.

En el último sobrevuelo se aprovechó la gravedad de Titán para hacer que Cassini entrase en la fase final de la misión, a modo de preparativo para su Gran Final: una serie de 22 órbitas semanas durante las cuales la nave se adentrará entre los anillos interiores de Saturno y la atmósfera exterior del planeta. La primera de estas ‘inmersiones’ entre los anillos se produjo el miércoles.

En los próximos meses, Cassini llevará a cabo muchos otros sobrevuelos no selectivos en Titán y otros satélites naturales del sistema saturniano, aunque a distancias mucho mayores. Estos sobrevuelos no precisan de maniobras especiales: se deben a que las lunas se encuentran relativamente cerca del trayecto de la nave.

El 11 de septiembre tendrá lugar un último y distante sobrevuelo, que se ha dado en llamar el ‘beso de despedida’, ya que servirá para dirigir a Cassini hacia su trayecto de colisión con Saturno del día 15 de septiembre. Así, la misión concluirá de una forma que impedirá la posibilidad de futuros impactos en Encédalo, la luna saturniana potencialmente habitable, protegiéndola para su exploración futura.

El 25 de abril a las 13:30 GMT (15:30 CEST) tendrá lugar una rueda de prensa en la reunión de la Unión Europea de Geociencias en Viena, Austria, para prever el Gran Final y para celebrar los aspectos científicos más destacados de los increíbles 13 años de Cassini en Saturno.

Nuevos datos publicados el 24 de abril en Nature Astronomy muestran que, visto desde la órbita de Cassini, el lado nocturno de Titán presenta entre 10 y 200 veces más luz que su lado diurno. Los científicos creen que podría deberse a la eficiente difusión frontal de la luz solar por la extensa neblina de su atmósfera, un comportamiento que en nuestro Sistema Solar solo presenta Titán.

El color rojo de Marte podría deberse a la fuerte oxidación generada por micropartículas de pirita

La disolución de micropartículas de disulfuro de hierro habría generado radicales libres que ocasionaron la precipitación de óxidos y sulfatos de hierro

El color rojo de la superficie de Marte podría deberse a la fuerte oxidación generada por la disolución de micropartículas de pirita en una atmósfera sin oxígeno, lo que generó radicales libres que a su vez indujeron la precipitación de óxidos y sulfatos de hierro, según muestra un estudio internacional liderado por investigadores del Consejo Superior de Investigaciones Científicas (CSIC) y con participación de la Universidad de Vigo y la NASA. Los resultados del estudio se publican en la revista Scientific Reports.

“Las reacciones químicas acuosas catalizadas por superficies minerales pueden condicionar significativamente la evolución geoquímica de su entorno”, explica Carolina Gil Lozano, investigadora del CSIC en el Centro de Astrobiología de Madrid y primera autora del estudio.

“Las reacciones químicas acuosas catalizadas por superficies minerales pueden condicionar significativamente la evolución geoquímica de su entorno”, explica Carolina Gil Lozano, investigadora del CSIC en el Centro de Astrobiología de Madrid y primera autora del estudio.

“Durante su disolución, la pirita (el disulfuro de hierro más común en la Tierra) es capaz de producir sustancias muy reactivas, entre las que se encuentra el peróxido de hidrógeno (la convencional agua oxigenada) y un conjunto de radicales libres muy inestables”, añade.

Gil Lozano explica que: “Aunque varios estudios han constatado la formación de estas sustancias químicas a partir de suspensiones de micropartículas de pirita en condiciones óxicas y anóxicas (en presencia o ausencia de oxígeno), no existe un análisis detallado de su evolución, algo necesario para comprender su función en los medios naturales”.

En este trabajo se han investigado las vías de formación y descomposición de dichas sustancias combinando experimentos de laboratorio y modelos numéricos. Para realizar los experimentos los investigadores han diseñado un reactor que les ha permitido registrar en tiempo real medidas realizadas con sensores y con espectrofotometría en atmósferas controladas.

“Los datos obtenidos sugieren que el peróxido de hidrogeno (agua oxigenada) generado por la superficie de la pirita reacciona con el hierro liberado en el transcurro de su disolución (mediante la conocida como “reacción de Fenton”), formando una gran cantidad de radicales libres en solución”, detalla Gil Lozano. “A partir de estos datos, construimos un modelo cinético que utilizamos para analizar la evolución de los radicales libres implicados en el proceso”.

De forma general, los resultados obtenidos revelan que a lo largo de la disolución de microparticulas de pirita se puede generar un poder de oxidación notable a partir de estos radicales libres, incluso partiendo de atmósferas que no contienen oxígeno, como parece haber sido el caso de Marte a lo largo de toda su historia.

“Bajo este contexto, parece razonable suponer que esta reacción pudo haber contribuido de alguna forma a la oxidación del sustrato marciano, induciendo la precipitación de óxidos y sulfatos de hierro. Por lo tanto, nuestros resultados pueden contribuir a explicar por qué la superficie de Marte es roja”, concluye Gil Lozano.

Referencia bibliográfica
C. Gil-Lozano, A.F. Davila, E. Losa-Adams, A.G. Fairén and L.Gago-Duport. Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces. Scientific Reports. Doi: 10.1038/srep43703

Descubiertos chorros supersónicos de plasma

Los datos sobre el campo magnético recopilados por la misión Swarm de la ESA han permitido descubrir en lo alto de nuestra atmósfera chorros supersónicos de plasma que pueden hacer ascender las temperaturas hasta casi 10.000 °C.

Durante el Swarm Science Meeting celebrado en Canadá la semana pasada, científicos de la Universidad de Calgary presentaron estos hallazgos y explicaron cómo estaban aprovechando las mediciones del trío de satélites Swarm para seguir desarrollando lo que ya se sabía sobre las vastas láminas de corriente eléctrica producidas en la alta atmósfera.

La teoría de que existen enormes corrientes eléctricas, impulsadas por el viento solar y guiadas a través de la ionosfera por el campo magnético terrestre, fue postulada hace más de un siglo por el científico noruego Kristian Birkeland.

Pero estas ‘corrientes de Birkeland’ no se pudieron confirmar mediante mediciones directas en el espacio hasta los años setenta, con la llegada de los satélites.

Estas corrientes transportan hacia la alta atmósfera hasta 1 TW de energía eléctrica, unas 30 veces lo que consume la ciudad de Nueva York durante una ola de calor.

También son responsables de las auroras polares, las populares cortinas de luz verdosa que se mueven lentamente de horizonte a horizonte.

Aunque estos sistemas de corrientes ya eran bien conocidos, las recientes observaciones de Swarm han revelado su relación con grandes campos eléctricos.

Estos campos, que son más fuertes en invierno, se producen allí donde las corrientes de Birkeland ascendentes y descendentes se conectan a través de la ionosfera.

Bill Archer, de la Universidad de Calgary, lo explica así: “Gracias a los datos procedentes los instrumentos de los satélites Swarm, descubrimos que estos potentes campos eléctricos impulsan chorros de plasma supersónicos”.

“Estos chorros, que llamamos ‘flujos fronterizos de corrientes de Birkeland’, marcan claramente el límite entre las láminas de corriente que se mueven en sentidos opuestos y provocan condiciones extremas en la alta atmósfera”.

“Pueden hacer que la ionosfera alcance temperaturas de hasta 10.000 °C, cambiando su composición química. También hacen que la ionosfera ascienda a mayores altitudes, donde la energización adicional puede conducir a la pérdida de material atmosférico al espacio”.

David Knudsen, también de la Universidad de Calgary, añade: “Estos últimos resultados de Swarm aportan nuevos datos sobre potencial eléctrico y tensión a nuestros conocimientos del circuito de corrientes de Birkeland, que probablemente sea el fenómeno de organización del sistema de acoplamiento magnetosfera-ionosfera más ampliamente reconocido”.

Este descubrimiento se suma a los nuevos hallazgos presentados en la semana de reuniones científicas dedicadas a la misión Swarm. En otro de los dedicados a las corrientes de Birkeland, por ejemplo, los datos de Swarm se utilizaron para confirmar que estas corrientes son más fuertes en el hemisferio norte y que presentan variaciones estacionales.

Desde su lanzamiento en 2013, los tres satélites idénticos de Swarm miden y desentrañan las distintas señales magnéticas procedentes del núcleo, el manto, la corteza, los océanos, la ionosfera y la magnetosfera de nuestro planeta.

Parte frontal de un satélite Swarm

Además del instrumental adecuado para ello, cada satélite presenta un instrumento de campo eléctrico en la parte frontal que mide la densidad, la deriva y la velocidad del plasma.

Como reconoce Rune Floberghagen, responsable de la misión Swarm de la ESA: “El instrumento de campo eléctrico es el primer generador de imágenes ionosférico en órbita, por lo que estamos encantados de obtener estos fantásticos resultados gracias a él”.

“La dedicación de los científicos que trabajan con los datos de la misión nunca deja de sorprenderme y estamos viendo algunos resultados excelentes, como estos, durante el encuentro de esta semana”.

“Swarm nos está permitiendo ver cómo funciona el planeta, desde lo más profundo de su núcleo hasta lo más alto de la atmósfera”.