Física Archive

Descubierta una nueva relación en el comportamiento de los bosones

Un estudio internacional con participación del CSIC descubre que la inestabilidad dinámica está vinculada con la topología de la materia cuántica

CSIC/DICYT Un estudio internacional con participación del Consejo Superior de Investigaciones Científicas (CSIC) ha descubierto una nueva relación en el comportamiento de los bosones: la inestabilidad dinámica –un fenómeno por el cual un estado de agrupación de bosones se puebla fuertemente­– está relacionada con el orden topológico de esa misma materia cuántica. El estudio se publica en la revista Physical Review Letters. “En la naturaleza existen dos tipos de partículas, fermiones y bosones, fundamentalmente diferentes. Los bosones tienden a organizarse todos en el mismo estado, mientras que los fermiones se evitan. En el caso de bosones interactuantes, un fenómeno llamado inestabilidad dinámica puede poblar fuertemente un estado cuántico bosónico dado”, explica la investigadora del CSIC Mónica Benito, del Instituto de Ciencia de Materiales de Madrid.

Comportamiento de los bosones31988_med

“En la naturaleza existen dos tipos de partículas, fermiones y bosones, fundamentalmente diferentes. Los bosones tienden a organizarse todos en el mismo estado, mientras que los fermiones se evitan. En el caso de bosones interactuantes, un fenómeno llamado inestabilidad dinámica puede poblar fuertemente un estado cuántico bosónico dado”, explica la investigadora del CSIC Mónica Benito, del Instituto de Ciencia de Materiales de Madrid.

“La inestabilidad dinámica es un tipo de orden más difícil de detectar que las fases usuales de los materiales, caracterizadas por parámetros de orden como la magnetización macroscópica en imanes”, indica Benito. “En el artículo mostramos cómo las inestabilidades dinámicas indican distintas fases topológicas y cómo esto puede ser utilizado de forma sistemática para generar modos protegidos espacialmente localizados y con creciente ocupación”, añade.

“Estos modos podrían ser útiles en el desarrollo de nuevos nano-dispositivos con el potencial de amplificar señales cuánticas muy pequeñas al mismo tiempo que se evitan pérdidas causadas por ruido”, concluye la investigadora.

El estudio se ha desarrollado en colaboración entre las investigadoras Gloria Platero y Mónica Benito, del Instituto de Ciencia de Materiales de Madrid, y los investigadores Tobias Brandes y Georg Engelhardt, de la Universidad Técnica de Berlín.

Referencia bibliográfica
G. Engelhardt, M. Benito, G. Platero, and T. Brandes. Topological instabilities in ac-driven bosonic systems. Physical Review Letters. arXiv:1512.07653v3

Fuente: DICYT
Website: dicyt.com


¿Qué es el experimento Ligo que ha demostrado la existencia de las ondas gravitacionales?

UCM/DICYT Aunque disponíamos de evidencias indirectas desde el año 1974, el descubrimiento ahora conocido supone la primera detección directa de este tipo de ondas. En 1974, R.A. Hulse y J.H. Taylor explicaron la variación en el periodo del púlsar binario PSR B1913+16 como efecto precisamente de la emisión de radiación gravitacional, por lo que fueron galardonados con el premio Nobel de Física en 1993.

Las ondas gravitacionales detectadas han sido producidas en la colisión de dos agujeros negros situados a más de mil millones de años luz de la Tierra. Dicha colisión habría generado una perturbación del espacio-tiempo que, de acuerdo con la teoría de la Relatividad General, se habría propagado hasta nosotros a la velocidad de la luz en forma de onda de deformación del propio espacio. Los dos detectores de aLIGO (Advanced LIGO), situados en Estados Unidos, han detectado la señal con un espectro consistente con las predicciones de la teoría propuesta por Einstein.

Experimento LIGO

Los detectores están formados por dos interferómetros láser, separados por una distancia de 3.000 km y cuyos brazos son tubos de vacío de varios kilómetros de longitud. El uso de dos detectores separados es fundamental para poder suprimir el ruido que constituye el principal problema en este tipo de técnica. Cuando una onda gravitatoria atraviesa uno de estos detectores genera un cambio minúsculo de una parte en 10^21 en la longitud del brazo que, sin embargo, esta tecnología ha sido capaz de detectar.

Este descubrimiento no solamente supone una confirmación de la teoría de gravitación de Einstein, que predice que las masas deforman tanto el espacio –cambian las longitudes de los objetos próximos a ellas– como el tiempo –hacen que los relojes avancen más despacio–, sino que abre una nueva ventana a la observación del universo.

A diferencia de las ondas electromagnéticas ordinarias, las ondas gravitacionales no son absorbidas ni reflejadas por la materia, por lo que pueden viajar directamente desde la fuente hasta nosotros y, de esta forma, podrán proporcionar información valiosísima de procesos astrofísicos y cosmológicos lejanos.

El primero de nuevos hallazgos

En el experimento LIGO, operado por Caltech y el MIT, trabajan más de 1.000 científicos de 15 países, entre los que se encuentran diez investigadores de universidades españolas. A diferencia de la detección fallida de estas ondas anunciada por el experimento BICEP2 en 2014, este descubrimiento no ha resultado una sorpresa para la comunidad científica, que esperaba que con la mejora en la sensibilidad de aLIGO se pudieran detectar hasta tres eventos como este en los tres primeros meses de funcionamiento.

De hecho, tanto aLIGO como el detector Advanced VIRGO (en Italia) deberían ser capaces de confirmar este descubrimiento a partir de los datos que se obtengan durante 2016 y 2017, en los que se esperan hasta 20 señales de este tipo, cantidad que se incrementará a partir de 2019 hasta las 200 detecciones por año.

En el futuro, otros detectores en el espacio como eLISA (Evolved Laser Interferometer Space Antenna), misión propuesta por la Agencia Espacial Europea, serán capaces de explorar nuevos rangos de frecuencias en el espectro de ondas gravitacionales que complementarán las detecciones en tierra, abriendo así la era de la astronomía de ondas gravitacionales.

Antonio López Maroto, María del Prado Martín Moruno y José Alberto Ruiz Cembranos son investigadores del Departamento de Física Teórica I de la Universidad Complutense de Madrid.


Fuente: DICYT
Website: dicyt.com


Las ondas gravitacionales, detectadas cien años después de la predicción de Einstein

LIGO abre una nueva ventana al universo con la observación de las ondas gravitacionales procedentes de la colisión de agujeros negros

UIB/DICYT Por primera vez, los científicos han observado ondulaciones en el tejido del espacio-tiempo, llamadas ondas gravitacionales, llegando a la Tierra procedentes de un evento catastrófico en el distante universo. Esto confirma una importante predicción de la teoría de la relatividad general de Albert Einstein de 1915 y abre una nueva ventana sin precedentes en el cosmos.

Ondas gravitacionales

Las ondas gravitacionales llevan consigo información acerca de sus dramáticos orígenes y sobre la naturaleza de la gravedad que no puede obtenerse de otra manera. Los físicos han llegado a la conclusión de que las ondas gravitacionales detectadas fueron producidas durante la última fracción de segundo de la fusión de dos agujeros negros para producir un solo agujero negro más masivo en rotación. Esta colisión de dos agujeros negros había sido predicha pero nunca antes había sido observada.

Las ondas gravitacionales fueron detectadas el 14 de septiembre de 2015 a las 5:51 hora de verano del este de Estados Unidos (09:51 UTC) por los dos detectores gemelos del Observatorio por Interferometría Láser de Ondas Gravitacionales (LIGO, por sus siglas en inglés), ubicados en Livingston, Louisiana, y Hanford, Washington, EE.UU. Los observatorios LIGO están financiados por la National Science Foundation (NSF), y fueron concebidos y construidos, y son operados por Caltech y MIT. El descubrimiento, aceptado para su publicación en la revista Physical Review Letters, fue realizado por la Colaboración Científica LIGO (que incluye la Colaboración GEO600 y el Australian Consortium for Interferometric Gravitational Astronomy) y la colaboración Virgo usando datos de los dos detectores LIGO.

La UIB participa en la detección directa de las primeras ondas gravitacionales

El grupo de Relatividad y Gravitación (GRG) de la Universidad de las Islas Baleares (UIB) es el único grupo de investigación en España que ha participado en este histórico éxito científico a través de la colaboración científica LIGO y GEO. La UIB participa en la colaboración científica LIGO desde 2002, si bien la doctora Alicia Sintes, profesora del Departamento de Física, fue una de las investigadoras que intervino en la puesta en marcha de este grupo de científicos en 1997. La doctora Sintes y el doctor Sascha Husa, también profesor de la UIB y miembro del GRG, forman parte del Consejo de LIGO.

Alicia Sintes está emocionada. Ella ha dedicado casi 20 años a la caza de estas elusivas ondas y ha trabajado para mejorar los detectores existentes y futuros. Para ella, el 14 de septiembre quedará marcado en su memoria como el inicio de una nueva era en astronomía: la astronomía gravitacional. Una herramienta que ayudará a desvelar muchos misterios del Universo.

Todos los miembros de la colaboración LIGO en la UIB han trabajado sin cesar durante estos últimos meses analizando los datos del primer periodo de observación de Advanced LIGO y los datos relacionados con este evento en particular. Varios de los investigadores de la UIB han contribuido de forma directa a este descubrimiento. Entre ellos se encuentra Miquel Oliver, un estudiante de doctorado de la UIB, que ha tenido la oportunidad única de vivir directamente este descubrimiento, ya que desde principios de septiembre se encontraba en la sala de control de LIGO Hanford monitorizando el detector, y caracterizando la calidad de los datos. A su vez, el profesor Sascha Husa, junto con el investigador postdoctoral David Keitel y el estudiante de doctorado Francisco Jiménez, han contribuido directamente a la identificación de la fuente a través de su investigación sobre la fusión de agujeros negros.

Con el fin de discernir el origen cósmico de una señal de onda gravitacional, o para calcular las masas de los objetos implicados, hay que resolver las ecuaciones de Einstein, que son el núcleo de la teoría de la relatividad general, y entender cómo las propiedades de la señal de las ondas gravitacionales dependerán de las propiedades de la fuente a través de las posibles señales.

Sascha Husa nos lo explica: “La idea básica es muy similar a la de aplicaciones de teléfonos inteligentes para identificar música, como Shazam. Si escuchas una canción en un bar ruidoso, la aplicación puede consultar una base de datos de posibles señales, y usando algoritmos matemáticos para compensar el ruido, te dirá cuál se ajusta mejor. Mi trabajo consiste en hacer un catálogo de todas las posibles señales de ondas gravitacionales procedentes de la fusión de agujeros negros, para que los que analizan los datos puedan compararlas con las señales inmersas en ruido que son registrada por LIGO”.

El desarrollo de este tipo de catálogos de canciones de agujeros negros ha sido el centro de la investigación de Sascha Husa durante la última década. Junto con sus colegas en la UIB, en la Universidad de Cardiff y el Instituto Max Planck de Física Gravitacional en Potsdam, el doctor Husa ha desarrollado modelos que no sólo describen la fusión de dos agujeros negros de forma precisa, sino que sus fórmulas también pueden calcularse rápidamente con los grandes ordenadores utilizados en el análisis de los datos de LIGO. Esta rapidez fue esencial en los últimos meses para identificar rápidamente el origen de la señal. Algunas de las simulaciones numéricas del la UIB sobre la colisión de agujeros negros han sido elaboradas por el estudiante de grado Rafel Jaume y algunas de ellas pueden ser visualizadas en el canal de Youtube UIB@GRG. Uno de los resultados clave calculados en base a los cálculos del grupo de la UIB es la potencia radiada por la fuente: 300 masas solares por segundo, más que cualquier otro acontecimiento astronómico jamás observado desde el Big Bang.

Para Alicia Sintes y los otros miembros del grupo, ahora está empezando la fase más excitante del análisis de los datos de LIGO, justo después de que haya finalizado el primer periodo de observación y los detectores se están actualizando para poder volver a operar en el otoño con una mejor sensibilidad. Junto con Miquel Oliver y con la ayuda técnica de Pep Covas y Laura Keitel, están buscando señales continuas procedentes de púlsares desconocidos (estrellas de neutrones en rotación). Estas señales son tan débiles, que es necesario integrar todos los datos tomados durante los 4 meses para tener alguna oportunidad de ver algo. Si este análisis desvelase alguna señal, ésta nos aportaría información sobre la materia en el interior de las estrellas de neutrones, un objeto del tamaño aproximado de Menorca y con una masa un 50% mayor que nuestro Sol, gobernado por las leyes de la teoría cuántica.

Otra predicción más de la teoría de la relatividad general de Einstein

De acuerdo con la relatividad general, una pareja de agujeros negros orbitando uno alrededor del otro pierde energía mediante la emisión de ondas gravitacionales, produciendo un acercamiento gradual entre ambos durante miles de millones de años, y luego mucho más rápidamente en los últimos minutos. Durante la última fracción de segundo, los dos agujeros negros chocan entre sí a casi la mitad de la velocidad de la luz y forman un único agujero negro más masivo, convirtiendo una parte de la masa de ambos en energía, de acuerdo con la fórmula de Einstein E = mc2. Esta energía se emite como una fuerte explosión final de ondas gravitacionales. Basándose en la física del choque entre dos agujeros negros, los científicos de LIGO estiman que la masa de los agujeros negros de este evento era 29 y 36 veces mayor que la del Sol, y que el evento tuvo lugar hace mil trescientos millones de años. Una masa aproximadamente 3 veces mayor que la del Sol se convirtió en ondas gravitacionales en una fracción de segundo, con una potencia pico de unas 50 veces la de todo el Universo visible. Estas son las ondas gravitacionales que LIGO ha observado.

El descubrimiento fue posible gracias a las capacidades mejoradas de Advanced LIGO, una importante actualización que aumenta la sensibilidad de los instrumentos en comparación con los detectores LIGO de primera generación, lo que permite un gran aumento del volumen del universo explorado y el descubrimiento de las ondas gravitacionales durante su primer periodo de observación. La National Science Foundation de Estados Unidos lidera el apoyo financiero a Advanced LIGO. Organismos de financiación en Alemania (Sociedad Max Planck), Reino Unido (Consejo de Infraestructuras de Ciencia y Tecnología, STFC) y Australia (Consejo Australiano de Investigación) también han contribuido significativamente al proyecto. Varias de las tecnologías clave que hicieron Advanced LIGO mucho más sensibles se han desarrollado y probado por la colaboración británico-alemana GEO. El clúster Atlas del AEI Hannover, el Laboratorio LIGO, la Universidad de Syracuse y la Universidad de Wisconsin Milwaukee han aportado recursos informáticos de manera significativa. Varias universidades han diseñado, construido y probado componentes clave para Advanced LIGO: la Universidad Nacional de Australia, la Universidad de Adelaide, la Universidad de Florida, la Universidad de Stanford, la Universidad de Columbia de Nueva York, y la Universidad Estatal de Louisiana.

En cada observatorio, los interferómetros LIGO de 4 km de largo en forma de L utilizan luz láser separada en dos haces que van y vienen dentro de los brazos (tubos de más de un metro de diámetro guardados en un vacío casi perfecto). Los haces se utilizan para controlar la distancia entre los espejos posicionados de forma muy precisa en los extremos de los brazos. De acuerdo con la teoría de Einstein, la distancia entre los espejos cambiará una cantidad infinitesimal cuando una onda gravitacional pase por el detector. Se puede detectar cambios en las longitudes de los brazos más pequeños que la diezmilésima parte del diámetro de un protón (10-19 metros). Son necesarios observatorios independientes y ampliamente separados para determinar la dirección del evento que causa las ondas gravitacionales, y también para verificar que las señales proceden del espacio y no son de algún otro fenómeno local.

La investigación en LIGO la lleva a cabo la Colaboración Científica LIGO (LSC), un grupo de más de 1000 científicos de universidades de todo Estados Unidos y de otros 14 países. Más de 90 universidades e institutos de investigación de la LSC desarrollan tecnología para el detector y analizan datos; alrededor de unos 250 estudiantes contribuyen de forma relevante a la colaboración. La red de detectores LSC incluye los interferómetros de LIGO y el detector GEO600. El equipo de GEO incluye científicos del Instituto Max Planck de Física Gravitacional (Albert Einstein Institute, AEI), Leibniz Universität Hannover, junto a socios de la Universidad de Glasgow, Universidad de Cardiff, la Universidad de Birmingham, otras universidades en el Reino Unido, y la Universidad de las Islas Baleares en España.

LIGO fue originalmente propuesto como un medio para detectar estas ondas gravitacionales en los años 1980 por Rainer Weiss, profesor de física, emérito, del MIT; Kip Thorne, que ocupa la cátedra del profesor Richard P. Feynman de física teórica de Caltech, emérito; y Ronald Drever, profesor de física, emérito, también de Caltech.

La investigación en Virgo se lleva a cabo por la Colaboración Científica Virgo, un grupo de más de 250 físicos e ingenieros pertenecientes a 19 laboratorios europeos diferentes: 6 del Centro Nacional de Investigación Científica (CNRS) de Francia; 8 del Instituto Nacional de Física Nuclear (INFN) en Italia; 2 de Nikhef en los Países Bajos; el Instituto Wigner en Hungría; el grupo POLGRAW en Polonia; y el Observatorio Gravitacional Europeo (EGO), el laboratorio que alberga el interferómetro Virgo cerca de Pisa, Italia.


Fuente: DICYT
Website: dicyt.com


KM3NeT, el mayor telescopio de neutrinos del mundo, inicia su construcción

La Universidad Politécnica de Valencia participa en esta instalación, que se ubica en costas de Capo Passero, cerca de Sicilia (Italia)

UPV/DICYT El pasado 3 de diciembre se dio un paso crucial en la construcción del que será el mayor telescopio de neutrinos del mundo, KM3NeT, con la instalación de la primera línea de detección frente a las costas de Capo Passero, cerca de Sicilia (Italia). La Universidad Politécnica de Valencia ha contribuido al éxito de este primer paso, gracias al trabajo realizado desde el grupo de investigación en Acústica para la Detección de Astropartículas. Este grupo pertenece al Instituto de Investigación para la Gestión Integrada de las Zonas Costeras (IGIC) del campus de Gandia y está liderado por el profesor Miguel Ardid Ramírez.

Tal y como explica el profesor Ardid, los neutrinos son las partículas elementales más elusivas; por tanto, pueden llegar de los confines del Universo y atravesar La Tierra inalteradas. Su detección no es sencilla y requiere de un volumen instrumental enorme: el telescopio KM3NeT ocupará más de 1 kilómetro cúbico marino con centenares de líneas de detección como la instalada para descubrir la débil señal lumínica generada por el neutrino en la oscuridad abisal.

La localización de neutrinos permitirá, por un lado, complementar los telescopios convencionales y estudiar los fenómenos más extremos del Universo a través de estos “mensajeros”, y por otro lado, estudiar las propiedades fundamentales de estas partículas, cruciales para entender las teorías físicas más modernas.

“Por su peculiar ubicación, KM3NeT también servirá para alojar experimentos de ciencias del mar y de La Tierra. La instalación de esta primera línea constituye un paso crucial para KM3NeT, no sólo porque supone el inicio de la construcción sino también porque demuestra la viabilidad de la tecnología KM3NeT desarrollada tras una década de investigación”, apunta Miquel Ardid.

Trabajo desde Gandia
El grupo de investigación del IGIC de la UPV ha tenido un papel importante en este primer paso en la construcción del telescopio. Desde sus instalaciones, los investigadores han trabajado en el diseño del sistema de posicionamiento acústico de KM3NeT, necesario para poder monitorizar la posición de los módulos ópticos en las profundidades del mar y así poder reconstruir las trayectorias de los neutrinos con una precisión angular mejor de un grado.

Concretamente, los emisores acústicos de KM3NeT han sido desarrollados por este grupo, en colaboración con la empresa valenciana MSM SLL. La doctoranda de la UPV, María Saldaña Coscollar, participó desde Sicilia en el despliegue y control de esta primera línea y en el análisis de los primeros datos del sistema acústico.

Sobre KM3NeT

KM3NeT es una colaboración internacional formada por más de 200 científicos de 40 instituciones y 10 países. Además de la Universidad Politécnica de Valencia, España participa en el proyecto a través del Instituto de Física Corpuscular y la Universidad Politécnica de Cataluña.

La idea de construir los módulos ópticos con muchos fotomultiplicadores pequeños, denominados “multi-PMT” –en lugar de usar módulos con un único fotomultiplicador– es una de las principales innovaciones respecto a experimentos anteriores como ANTARES (también situado en el Mediterráneo) o IceCube (ubicado en el Polo Sur). Los módulos multi-PMT de KM3NeT ofrecen unas mejores prestaciones y tienen una mayor relación coste-eficiencia.

KM3NeT aumentará el potencial científico de su predecesor, ANTARES, en la que la UPV también participa y entre cuyos resultados destaca el desarrollo del mapa del cielo del Hemisferio Sur a partir de neutrinos, el establecimiento de límites para detectar materia oscura o el estudio de sucesos astrofísicos catastróficos.


Fuente: DICYT
Website: dicyt.com


Si pudiésemos ver las ondas gravitatorias

Imagínate dos agujeros negros del tamaño de una buena fracción de nuestro Sistema Solar girando uno alrededor del otro, acercándose más y más hasta que chocan y se funden, formando una prisión gravitatoria de proporciones descomunales.

Pero ¿qué verías exactamente? A pesar de la magnitud de la catástrofe, todo ocurriría de forma sigilosa ya que los agujeros negros, por su propia naturaleza, no emiten luz. Sin embargo, sería completamente diferente si nuestros ojos pudiesen ver las ondas gravitatorias.

Ondas gravitacionales

Esta imagen es una simulación por ordenador de las ondas gravitatorias que emitiría una colisión entre dos agujeros negros, y se parece bastante a las ondulaciones que se forman en la superficie de un estanque al tirar una piedra.

En el caso de las ondas gravitatorias las perturbaciones no se propagan por el agua, sino por el continuo del espacio tiempo, un ‘tejido’ matemático propuesto por Albert Einstein para explicar la interacción gravitatoria.

Todavía no se han podido observar ondas gravitatorias de forma directa. Su detección nos permitiría estudiar el Universo de una forma completamente diferente y, por esto, los astrónomos están trabajando en el desarrollo de detectores tanto en la Tierra como en el espacio, aunque no es una tarea nada fácil.

Las ondas gravitatorias son increíblemente difíciles de detectar. Su movimiento ondulatorio hace que los átomos oscilen aproximadamente 1 parte en 1000 000 000 000 000 000 000. Detectar este movimiento sería equivalente a medir la distancia de la Tierra al Sol con la precisión de un átomo de hidrógeno.

Tras décadas de experimentos y desarrollos tecnológicos, los detectores terrestres están muy cerca de conseguir la precisión necesaria. Se espera que realicen sus primeras detecciones en cuestión de unos pocos años, aunque sólo serán capaces de ver una parte de la historia.

La frecuencia de las ondas gravitatorias depende de la masa de los agujeros negros que estén chocando. Los más pequeños, con una masa unas pocas veces superior a la de nuestro Sol, generarían ondas gravitatorias de alta frecuencia que podríamos detectar desde la Tierra. Sin embargo, los agujeros negros masivos que se encuentran en el centro de las galaxias, de un millón de masas solares, generarían ondas gravitatorias de una frecuencia tan baja que quedarían silenciadas por las interferencias sísmicas u otras fuentes de ruido de nuestro planeta. Por este motivo, es necesario desarrollar detectores espaciales.

La ESA ha seleccionado el Universo gravitatorio como el objetivo de la tercera gran misión de su plan Cosmic Vision, que se lanzará en el año 2034.

Desvelar los misterios del Universo gravitatorio no será nada fácil. La ESA va a lanzar el satélite LISA Pathfinder en noviembre para probar las tecnologías clave que serán necesarias para desarrollar un futuro observatorio espacial de ondas gravitatorias.

Esta imagen forma parte de una simulación de las ondas gravitatorias emitidas por la fusión de dos agujeros negros, y fue publicada por la NASA en el año 2012.


Fuente: ESA
Website: esa.int


La tensión ilumina nuevas propiedades de los puntos cuánticos

Un equipo internacional de investigadores diseña una nueva estrategia para manipular la fluorescencia de los puntos cuánticos

UJI/DICYT Los nanocristales semiconductores, o puntos cuánticos, son minúsculas partículas de tamaño nanométrico con la capacidad de absorber la luz y volver a emitirla con colores bien definidos. Gracias a un bajo coste de fabricación, a su estabilidad a largo plazo y a una amplia paleta de colores, se han convertido en una importante base de la tecnología visual, introduciendo mejoras en la calidad de imagen de televisores, tabletas y teléfonos móviles. También están surgiendo interesantes aplicaciones de los puntos cuánticos en los campos de la energía verde, la detección óptica, y las bio-imágenes.

31997_med

Las perspectivas son incluso más atractivas después de una publicación, titulada “Band structure engineering via piezoelectric fields in strained anisotropic CdSe/CdS nanocrystals” (“Ingeniería de la estructura de bandas mediante campos piezoeléctricos en puntos cuánticos anisotrópicos de CdSe/CdS sometidos a tensión” publicada en la revista Nature Communications el pasado mes de julio. Un equipo internacional, formado por científicos del Instituto Italiano de Tecnología (Italia), la Universidad Jaume I (España), el laboratorio de investigación de IBM en Zúrich (Suiza) y la Universidad de Milano-Bicocca (Italia), ha demostrado un enfoque radicalmente nuevo para manipular la emisión de luz de los puntos cuánticos.

El principio de funcionamiento tradicional de los puntos cuánticos se basa en el llamado efecto de confinamiento cuántico, según el cual el tamaño de la partícula determina el color de la luz emitida. La nueva estrategia se basa en un mecanismo físico completamente diferente; un campo eléctrico con tensión inducida en el interior de los puntos cuánticos. Éste se crea mediante el crecimiento de un armazón grueso alrededor de los puntos. De esta manera, los investigadores pudieron comprimir el núcleo interior, creando el intenso campo eléctrico interno. Este campo se convierte en el factor dominante en la determinación de las propiedades de emisión.

El resultado es una nueva generación de puntos cuánticos cuyas propiedades van más allá de las que se generan sólo por el confinamiento cuántico. Esto no sólo amplía el ámbito de aplicación de los conocidos materiales CdSe/CdS, sino también de otros materiales. “Nuestros hallazgos añaden un nuevo e importante grado de libertad al desarrollo de dispositivos tecnológicos basados en puntos cuánticos”, afirman los investigadores. “Por ejemplo, el tiempo transcurrido entre la absorción y la emisión de la luz se puede extender a más de 100 veces mayor en comparación con los puntos cuánticos convencionales, lo que abre el camino hacia memorias ópticas y nuevos dispositivos de píxel inteligente. El nuevo material también podría derivar en sensores ópticos altamente sensibles a campos eléctricos en el medio ambiente a escala nanométrica”.

This entry passed through the Full-Text RSS service – if this is your content and you’re reading it on someone else’s site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers.

 


Fuente: DICYT
Website: dicyt.com


Los mecanismos de funcionamiento del cerebro humano empleando las leyes de la física

Los investigadores han realizado un original planteamiento, en el que estudian detalladamente las neuronas cerebrales como si fueran ecuaciones físicas

UGR/DICYT ¿Es posible explicar los mecanismos de funcionamiento del cerebro humano empleando únicamente las leyes de la física? Científicos de la Universidad de Granada (UGR) han demostrado por primera vez que sí, en un artículo publicado en Scientific Reports, que edita la prestigiosa revista Nature.

Los investigadores Joaquín Torres y Joaquín Marro, del Instituto Carlos I de la UGR, han realizado un original planteamiento: han estudiado detalladamente las neuronas cerebrales como si fueran ecuaciones físicas en derivadas parciales, que se relacionan según un entramado de interacciones, denominadas sinápticas.

Funcionamiento físico del cerebro

Su trabajo ha permitido establecer un modelo basado en una serie de redes de neuronas matemáticas que imitan a esas redes naturales de conexiones cerebrales que dan soporte a nuestra mente.

Los investigadores de la UGR han detectado y caracterizado con detalle en su modelo hasta siete fases o comportamientos de la mente humana cualitativamente distintos, a los que han asignado un color diferente (parte superior de la figura 1).

Estos cambios tienen lugar al variar un parámetro D, que describe el nivel de “ruido”, esto es, la suma de señales aparentemente aleatorias que provienen de otras partes del sistema nervioso o del exterior. Estas fases incluyen los familiares estados mentales de reposo completo o discontinuo, sincronizaciones neuronales totales, parciales o cambiantes con el tiempo, recuperación de memorias, etc., y situaciones muy dinámicas que recuerdan nuestros estados de vigilia y atención.

Además, al perturbar el sistema con una señal débil muestra con claridad seis picos bien definidos (curva en la parte inferior de la figura 1) que señalan las transiciones entre las fases que se observan.

Cambios de fase

Como explican los profesores Torres y Marro, “los físicos sabemos describir con fidelidad matemática situaciones singulares que genéricamente denominan cambios de fase. Es el caso del agua cuando se solidifica, adoptando una estructura tan diferente de la de partida que ya no hablamos de agua, y cuando se hace vapor, que puede extenderse sin límite por todo el espacio aunque apenas haya cambiado de volumen al ir calentándola hasta llegar a esa situación”.

La fenomenología asociada con cambios de fase es, en la práctica, aún más fascinante de lo que indican estas pautas pues en lugar del equilibrio ideal que describe la termodinámica, en la naturaleza reinan las irregularidades espaciales y temporales. “Es el caso de cerebros evolucionados, como se ha hecho evidente en estudios recientes usando resonancias magnéticas, tomografía por emisión de positrones, encefalografías y delicadas sondas”, explican los autores de este trabajo.

Esta conducta sugiere preparar sencillos experimentos psicofísicos como los que ilustra la figura 2. “Se trata de estimular el cerebro con una señal débil ―tal como, por ejemplo, suaves soplos de aire sobre los ojos― y monitorizar cómo se propaga por nuestra red neuronal mientras compite con otro ruido ―tal como un sonido cuya intensidad puede ir modificándose”, explican.

Se supone que el estímulo es procesado por las neuronas y que éstas reaccionan provocando sincronizados parpadeos como respuesta y defensa. Sin embargo, las neuronas también están siendo perturbadas por el ruido D, de modo que pueden no ser capaces de sincronizarse adecuadamente con los soplos.

Propiedades robustas

Los investigadores de la UGR han demostrado también que las propiedades emergentes del modelo son robustas, esto es, poco sensibles a posibles modificaciones en los detalles, particularmente, los referidos a la forma topológica de la malla de interacciones.

Tras comprobar la versatilidad y utilidad de su modelo, los científicos de la UGR pretenden ahora adaptarlo “para comprender cómo cambian esos fenómenos emergentes relacionados con funciones mentales, al considerar distintas mallas de interacciones según los datos que están siendo disponibles para especies animales distintas. Quizá este camino nos lleve a averiguar qué nos hace a los humanos diferentes en lo que al cerebro se refiere”, concluyen los investigadores.


Fuente: DICYT
Website: dicyt.com


Los neutrinos y la materia oscura, la última frontera de la física

Hace ya ochenta años que Wolfgang Pauli predijo la existencia de los neutrinos, unas partículas sin apenas masa, sin carga eléctrica y que se mueven a la velocidad de la luz aunque ya entonces predijo que sería casi imposible detectarlos. Para detectarlos, se han construido algunas de las máquinas más sensibles realizadas por el hombre y cuando ya parece que es posible confirmar su existencia y se sabe que viajan a la velocidad de la luz no dejan de aparecer nuevas preguntas. ¿cuál es su función en el edificio cósmico? ¿están relacionados con la materia oscura?

Estos detectores se ubican en el fondo del mar o en laboratorios subterráneos. Así, “el material que tenemos entre el detector y la atmósfera actúa de pantalla y filtra todas las partículas menos los neutrinos”, que son capaces de “pasar a través de la Tierra, del plomo o de nosotros mismos”, comenta Sergio Pastor, investigador del Instituto de Física Corpuscular (IFIC, centro mixto del CSIC y la Universidad de Valencia), en declaraciones a DiCYT.

“Aunque hay muchísimos, podemos detectar muy poquitos”, asegura. Por eso, sigue siendo un reto para la ciencia medir los neutrinos que tienen más energía y los que tienen menos. “Pensamos que tienen que estar ahí pero hasta ahora solo hemos hallado los intermedios”, apunta el investigador del IFIC.

Detector de neutrinos

Los neutrinos saltaron a las primeras páginas de los periódicos cuando en 2011 un experimento del Centro Europeo de Física de Partículas (CERN) reveló que estas partículas viajaban supuestamente 20 nanosegundos más rápido que la luz en el vacío, lo cual era contrario a la Teoría de la Relatividad de Einstein, pero más tarde se ha comprobado en varias ocasiones que todo fue un error. “Varios experimentos han confirmado que viajan a la misma velocidad que la luz, así que fue un problema a la hora de medir el tiempo que pasaba desde que se lanzaban hasta que eran detectados”, explica el físico.

Las aportaciones españolas

Aunque con cierto retraso, España se ha incorporado a este campo de la investigación, en la actualidad participa en muchos experimentos y hay físicos teóricos que contribuyen a estudiar su naturaleza. Sergio Pastor y su equipo buscan “efectos de los neutrinos en distintas situaciones o cómo darles masa”, mientras que otros expertos españoles están directamente involucrados en los experimentos de detección.

El científico del IFIC está en Salamanca con motivo de la reunión del proyecto Multimessenger Approach for Dark Matter Detection o Método de Multimensajeros para la Detección de la Materia Oscura, conocido como Multidark. “La materia oscura es mucho más extraña, aún no la hemos detectado, pero es posible que los neutrinos que proceden de lugares como el centro del Sol o el centro de nuestra galaxia sean una señal de su existencia, así que hay cierta relación entre las dos cosas”, comenta.

Aunque es difícil pensar en las aplicaciones que puede tener el conocimiento de estas escurridizas partículas, los detectores de neutrinos pueden servir para monitorizar la actividad de los reactores nucleares y controlar su uso pacífico. “Un reactor nuclear es una fuente muy potente de neutrinos, así que si colocamos un detector en el exterior podríamos ver cómo funciona y obtener información importante, por ejemplo, si se ha extraído plutonio para armas nucleares en el caso de los países sospechosos de hacerlo”, apunta Sergio Pastor.


Fuente: Agencia Iberoamericana para la Divulgación de la Ciencia y la Tecnología (http://www.dicyt.com)

Vídeo sobre la búsqueda de la materia oscura

La materia oscura podría acabar convirtiéndose en un nuevo santo grial tras el que todos corren pero nadie ha visto. En este vídeo de la ESA se explica qué se está buscando y cómo se está haciendo esa búsqueda, teniendo siempre en cuenta las palabras de Einstein sobre la constante cosmológica (una solución práctica para una ecuación equivocada): “Ha sido la mayor estupidez que he cometido en mi vida”.

Todo lo que nos rodea, desde el planeta Tierra hasta las galaxias distantes, representa sólo el cinco por ciento del universo. El resto es o bien energía oscura o bien materia oscura.

Algunos físicos y expertos del CERN nos ayudan a entender un poco más sobre la materia oscura.

En Ginebra hace tres años, se confirmó la existencia del bosón de Higgs. Este año se esperan nuevos hallazgos con la puesta en marcha del Gran Colisionador de Hadrones que funcionará a pleno rendimiento por primera vez .

Pero, los avances no sólo vendrán del gran acelerador de partículas. La Agencia Espacial Europea está construyendo un nuevo telescopio espacial llamado Euclides con el que se podrá observar el universo a gran escala.

Con estos dispositivos tecnológicos los físicos y cosmólogos han encontrado que la materia normal constituye sólo el 5 por ciento de todo el universo. Y  la proporción de materia oscura sigue aumentando…

La investigación sigue avanzando. Y los científicos están casi seguros de que probablemente la materia oscura, podría estar integrada por algún tipo de partícula misteriosa, y que tarde o temprano terminarán por identificarla.

Buscando la materia oscura

La luz puede viajar por debajo de la velocidad de la luz

Los científicos han sabido desde hace mucho tiempo que la velocidad de la luz puede ser reducida ligeramente mientras circula a través de materiales como el agua o el cristal. Sin embargo, se pensaba que era imposible para las partículas de luz, los fotones, ralentizar su marcha mientras viajaban a través del espacio vacío sin impedimentos ni interacciones con ningún material. En un nuevo trabajo publicado en el Science Express  investigadores de la Universidad de Glasgow han descrito cómo han conseguido ralentizar a los fotones en el espacio vacío por primera vez. Han demostrado que aplicando una máscara a un haz de luz para dar a los fotones una estructura espacial determinada, pueden reducir su velocidad.

Fotones a la velocidad de la luz

El equipo ha comparado un rayo de luz que contiene muchos fotones a un equipo de ciclistas que comparten el trabajo por turnos para ponerse en cabeza. Aunque el grupo viaja por la carretera a una velocidad como una unidad la velocidad de los ciclistas individuales puede variar mientras cambian de posición para tomar relevos.

La formación en grupo puede hacer más difícil definir una única velocidad para todos los ciclistas y lo mismo se aplica a la luz. Un pulso de luz contiene varios fotones y los científicos saben que los pulsos de luz se caracterizan por circular a un número de velocidades diferentes.

El experimento de este equipo estaba configurado como una carrera contrarreloj por equipos con dos fotones liberados simultáneamente idéntica distancia de una determinada línea de meta. Los investigadores encontraron que un fotón alcanzaba la meta como estaba previsto pero el fotón modificado que ha sido afectado por la máscara llegaba después, lo que significa que estaba viajando más despacio por el espacio vacío. En una distancia de un metro el equipo midió una ralentización de hasta 20 longitudes de onda, varias veces mayor que la precisión de la propia medición.

El trabajo demuestra que después de pasar el rayo de luz a través de una máscara, los fotones se mueven más despacio a través del espacio. Esto es muy distinto del efecto de ralentización al pasar la luz a través de un medio como el agua o el cristal donde la luz sólo es ralentizada durante el tiempo en el que pasa a través del material y recobra la velocidad de la luz al volver al salir por el otro lado. El efecto de pasar la luz a través de la máscara consiste en limitar de forma permanente la velocidad máxima a la que los fotones pueden viajar.

El trabajo ha sido llevado a cabo por un equipo de la Universidad de Glasgow liderado por el profesor Miles Padgett, trabajando con el físico teórico Stephen Barnett y con Daniele Faccio de la Universidad Heriot-Watt.

Daniel Giovannini, uno de los autores principales del estudio, dijo “El retraso que hemos introducido en el fotón estructurado es pequeño, medido en varios micrómetros sobre una distancia de propagación de un metro, pero es significante. Hemos medido efectos similares en dos tipos diferentes de rayos conocidos como haces Bessel y haces Gaussianos”.

Jacquiline Romero, coautora del estudio, dijo “Hemos conseguido este efecto de ralentización con algunos sutiles pero ampliamente conocidos principios ópticos. Este descubrimiento muestra sin ambigüedad que la propagación de la luz puede ser reducida por debajo de la cifra comúnmente aceptada de 299.792 kilómetros por segundo incluso cuando viaja a través del aire o en el vacío”.

El profesor Padgett añadió “Puede parecer sorprendente que se haga viajar a la luz más despacio de esta manera pero el efecto tiene una sólida base teórica y confiamos en que nuestras observaciones sean correctas. Los resultados nos dan una nueva manera de pensar acerca de las propiedades de la luz y estamos dispuestos a continuar explorando el potencial de este descubrimiento en futuras aplicaciones. Esperamos que el efecto sea aplicable a cualquier teoría de ondas así que se podría aplicar una ralentización similar a las ondas de sonido, por ejemplo”.